
Universidade Federal de Pernambuco

Centro de Informática

Pós-graduação em Ciência da Computação

MODULAR REASONING FOR SOFTWARE

PRODUCT LINES WITH EMERGENT

FEATURE INTERFACES

Jean Carlos de Carvalho Melo

DISSERTAÇÃO DE MESTRADO

Recife - PE

07 de Março de 2014

Universidade Federal de Pernambuco

Centro de Informática

Jean Carlos de Carvalho Melo

MODULAR REASONING FOR SOFTWARE PRODUCT LINES

WITH EMERGENT FEATURE INTERFACES

Trabalho apresentado ao Programa de Pós-graduação em

Ciência da Computação do Centro de Informática da Uni-

versidade Federal de Pernambuco como requisito parcial

para obtenção do grau de Mestre em Ciência da Com-

putação.

Orientador: Paulo Henrique Monteiro Borba

Recife - PE

07 de Março de 2014

ACKNOWLEDGEMENTS

Em primeiro lugar, louvo a Deus por essa importante conquista. Ele tem me auxiliado em

todos os desafios da minha vida. Toda honra e glória sejam dadas ao SENHOR, Criador

e Mantenedor da nossa vida.

Segundo, a minha linda famı́lia que me apoia desde o pŕıncipio e continuam batalhando

para me oferecer boas condições de estudo. Agradeço também a minha amada, Edinez,

pelo ombro amigo e companheiro que me ajudou nos momentos em que precisei, e pela

compreensão.

Terceiro, ao meu orientador Paulo Borba pela excelente orientação (incentivos, con-

tribuições e sugestões) que proporcionaram a conclusão deste trabalho.

Quarto, aos professores Márcio Ribeiro e Kiev Gama pelos valiosos comentários.

Quinto, agradeço aos membros do SPG e do LabES pelas contribuições que ajudaram

na conclusão deste trabalho e, em especial a: Henrique Rebêlo, Jefferson Almeida, Leopoldo

Teixeira, Márcio Ribeiro, Paola Accioly, Rodrigo Andrade e Társis Toledo.

Sexto, agradeço aos amigos que fiz durante o mestrado. São eles: Elvio, Rapha, Super

Jeff, Francisco (meu patrão), Evandro (xuxu), Pedro, Chico e Cartaxo. Gostaria também

de agradecer aos meus colegas (e ex) de apto: Douglas, sr. Jailson, Alessandro e Mailson.

Obrigado galera pelas pizzas, happy hours, etc.

Finalmente, agradeço ao INES — Instituto Nacional de Ciência e Tecnologia para

Engenharia de Software — e ao CNPq por financiar este trabalho.

RESUMO

Uma Linha de Produto de Software (LPS) consiste em uma famı́lia de sistemas que

compartilham um conjunto gerenciado de funcionalidades e são desenvolvidos a partir

de um núcleo comum de artefatos. Esses artefatos correspondem a componentes, classes,

arquivos de propriedade, e outros tipos de arquivos que são compostos de diversas formas

para especificar ou construir produtos espećıficos. As features detêm os pontos variáveis

da LPS. Elas são frequentemente implementadas usando pré-processadores. Embora

os pré-processadores sejam largamente utilizados, eles poluem o código prejudicando a

compreensão do mesmo, tornando a manutenção propensa a erros e, consequentemente,

mais cara.

Para minimizar esse problema, pesquisadores propuseram Interfaces Emergentes (Emer-

gent Interfaces) que estabelece contratos entre os elementos de código que compõem as

features com a finalidade de capturar suas dependências. Porém, eles não oferecem uma

interface de feature global que considere todos os fragmentos de uma determinada feature.

Como resultado, o desenvolvedor pode introduzir erros na LPS visto que o mesmo não

pode entender e raciocinar sobre uma dada feature por completo.

Para solucionar isto, nós propomos o conceito de Interfaces de Features Emergentes

(Emergent Feature Interfaces) que infere as dependências entre features considerando todos

os fragmentos de cada feature. Desta forma, nossa abordagem ajuda o desenvolvedor a

compreender uma feature de forma independente visto que ele está ciente das dependências

da feature como o todo, evitando assim a quebra dessas dependências. Para implementar

a nossa abordagem, nós adaptamos o Emergo. Posteriormente, avaliamos nossa proposta

usando cinco LPSs comparando-a com Interfaces Emergentes. Os resultados preliminares

sugerem que Interfaces de Features Emergentes são viáveis e úteis para manter LPSs.

Além disso, nós observamos que as LPSs atuais são multilinguagens e complexas. Isto

significa que capturar dependências entre features torna-se ainda mais complicado. Com

isso em mente, propomos uma análise automática que computa dependências entre features

a partir de uma gama de artefatos escritos em diferentes linguagens de programação.

Assim sendo, usamos a ideia de Interfaces de Features Emergentes para melhorar a

mantenabilidade de LPSs multilinguagens. Nós também desenvolvemos uma ferramenta

protótipo e avaliamos a nossa análise através de um estudo de caso. As descobertas iniciais

mostram que existem dependências entre features que estão espalhadas nos diferentes

artefatos e que as mesmas podem ser facilmente quebradas caso um desenvolvedor altere

alguma extremidade da dependência.

Palavras-chave: Linhas de Produtos de Software, Pré-processadores, Dependências de

feature, Sistemas de software multilinguagens, Dependências entre linguagens

ABSTRACT

A Software Product Line (SPL) represents a family of software systems developed from

reusable artifacts, which contain variation points. Artifacts correspond to components,

classes, property files, among others that are composed in different manners to specify or

build specific products. Features in turn hold the variability of a SPL. One widespread

technique to implement features of a SPL is preprocessors, but it obfuscates the source

code and reduces comprehensibility, making maintenance error-prone and costly.

To minimize this problem, researchers propose Emergent Interfaces (EI) to capture

dependencies between part of a feature that a developer is maintaining and the others. The

authors develop a tool called Emergo for improving the maintainability of preprocessor-

based software systems. Yet, they do not provide an overall feature interface considering

all parts in an integrated way. As a consequence, a developer still might introduce bugs

in the software product line since she cannot safely understand and reason about one

complete feature before changing the code.

To address that, we propose the concept of Emergent Feature Interfaces (EFI), an

evolution of Emergent Interfaces, that consists of inferring feature dependencies by looking

at a feature as a whole. EFI provide to the developer to see the dependencies of a given

feature through a global interface, which considers all parts of a feature in an integrated

way. That way, EFI help the developer to achieve independent feature comprehensibility

and, consequently, she can change a feature code aware of its dependencies, avoiding

breaking other features. We adapted Emergo to implement our proposal and we evaluate

our proposal in terms of size and precision comparing with EI by using five preprocessor-

based systems. The results of our study suggest the feasibility and usefulness of the

proposed approach.

Besides, we observe that contemporary software product lines are large and multi-

language. This means that capturing feature dependencies for these types of systems can

be even harder. With this in mind, we propose a cross-language automated analysis for

improving the maintainability of multi-language software product lines. Our approach

uses the idea of emergent feature interfaces to capture feature dependencies out of a

multitude of artifacts written in different languages. We developed an open-source tool

called GSPAnalyzer to implement our technique. To evaluate the proposed approach, we

ran a case study with a multi-language product line named RGMS and the results brought

preliminary evidence that exists feature dependencies between heterogeneous artifacts and

these dependencies can be easily broken if a developer changes either dependence end.

Keywords: Software Product Lines, Preprocessors, Feature Dependencies, Multi-

language Software Systems, Cross-Language Dependencies

LIST OF FIGURES

2.1 Characteristics of a car. 18

2.2 Car feature diagram. 18

2.3 CIDE screenshot (extracted from [2]). 22

2.4 Emergo screenshot (extracted from [4]). 23

3.1 EI for #ifdefs GUI . 28

3.2 EI with duplicate information . 31

3.3 Emergent feature interface for the feature GUI 33

3.4 Emergent feature interface for the feature FEAT STL OPT 34

3.5 Emergo’s architecture and activity diagram-like 36

3.6 Jimple annotated. 38

3.7 Reaching definitions analysis result. 39

3.8 Dependency graph. 40

3.9 EFI for our running example. 40

3.10 Extended Emergo’s screenshot. 41

4.1 Multi-language software systems and their language composition. 52

4.2 Relationship between two Groovy classes. 54

4.3 Dependency between different languages. 56

4.4 Relationship between Java and Groovy code. 58

4.5 RGMS’s composition of languages. 60

4.6 RGMS feature model. 60

4.7 Dependencies between GSP and Groovy code. 62

4.8 Dependencies between preprocessor-based artifacts. 64

4.9 Emergent feature interface for the Groovy link tag. 66

4.10 Emergent feature interface for an action definition. 67

4.11 Emergent feature interface for the Groovy actionSubmit tag. 67

4.12 GSPAnalyzer architecture. 71

xi

4.13 Boxplot graphic. 75

4.14 Unsatisfied feature dependencies . 76

LIST OF TABLES

3.1 Characteristics of the experimental objects [59]. 43

3.2 Evaluation results. 46

3.3 Additional results. 48

4.1 Statistics of the RGMS. 74

4.2 Unsatisfied dependencies found. 75

4.3 Evaluation summary. 77

CONTENTS

Chapter 1—Introduction 13

1.1 Contributions . 15

1.2 Outline . 16

Chapter 2—Background 17

2.1 Software Product Lines . 17

2.1.1 Benefits . 19

2.2 Preprocessors . 20

2.3 Virtual Separation of Concerns . 21

2.4 Emergent Interfaces . 22

Chapter 3—Emergent Feature Interfaces 25

3.1 Motivation . 25

3.2 The Concept of Emergent Feature Interfaces 31

3.3 Implementation . 35

3.3.1 Limitations and Ongoing work . 41

3.4 Evaluation . 42

3.4.1 Study settings . 42

3.4.2 Results and Discussion . 44

3.4.3 Additional analysis . 47

3.4.4 Threats to validity . 50

3.4.4.1 Conclusion validity . 50

3.4.4.2 External validity . 50

3.4.4.3 Internal validity . 50

xv

Chapter 4—Multi-Language Software System Analysis 51

4.1 Motivation . 51

4.1.1 RGMS . 59

4.2 Cross-Language Automated Analysis . 64

4.3 Implementation . 68

4.3.1 Limitations and Ongoing work . 72

4.4 Evaluation . 73

4.4.1 Study settings . 73

4.4.2 Results and Discussion . 74

4.4.3 Threats to validity . 78

4.4.3.1 Conclusion validity . 78

4.4.3.2 External validity . 78

4.4.3.3 Internal validity . 79

Chapter 5—Concluding Remarks 81

5.1 Summary of contributions . 81

5.2 Limitations . 82

5.3 Related work . 83

5.3.1 Feature Modularity . 83

5.3.2 Cross-Language Analysis . 85

5.4 Future work . 86

Appendix A—Online Appendix 97

CHAPTER 1

INTRODUCTION

A Software Product Line (SPL) represents a family of software systems developed from

reusable artifacts [20, 56]. Artifacts correspond to components, classes, property files,

among others that are composed in different manners to specify or build specific products.

The idea of SPL is the systematic and efficient creation of products based on strategic

software reuse. By reusing artifacts, we can build products through features defined in

accordance with customers’ requirements [56]. In this context, features are the semantic

units by which we can distinguish product line variants [70]. Feature models represent the

commonalities and variabilities and define the legal combinations of features of a product

line [30].

To implement features in an SPL, developers often use preprocessors [35, 58, 21, 40],

which is a well-known technique, mainly in industry, to deal with variability. Preprocessor

directives like #ifdef and #endif encompass feature code. Despite their widespread

usage [40, 59], preprocessors obfuscate the source code, reducing comprehensibility and

making maintenance error-prone and costly [65, 38]. Besides that, preprocessors do not

provide support for separation of concerns. In the literature, #ifdef directives are even

referred as “ifdef hell” [24, 43]. This way, the developer might introduce errors in an SPL

when changing a feature code, because one cannot safely reason about a feature without

looking at the code of other features.

Virtual Separation of Concerns (VSoC) [35] has been used to address some of these

preprocessor problems by allowing developers to hide feature code not relevant to the

current maintenance task. The main idea of VSoC is to allow developers to focus on

a feature without being distracted by the other features. However, different features

eventually share variables, so VSoC does not modularize features since developers do not

know anything about these variables in hidden features. Features eventually share code

elements like variables. We refer to feature dependency whenever we have such sharing

like when a feature assigns a value to a variable that is subsequently used by another

feature. As a result, the developer might introduce some bugs in the SPL when changing

13

14 INTRODUCTION

a variable of a determined feature. Thus, one change in one feature might lead to errors

in others. Moreover, these errors can cause behavioral problems in the SPL [59]. In many

cases, bugs are only detected by customers running a specific product with the affected

feature combination [33].

To minimize this problem, researchers propose Emergent Interfaces (EI) [58, 57] to

capture dependencies between part of a feature that a programmer is maintaining and the

others. In terms of implementation, the authors develop a tool called Emergo [61, 60], an

Eclipse plug-in, for improving the maintainability of preprocessor-based software systems.

Although this approach considers #ifdef blocks (parts of a feature) to compute EI and

still have the VSoC benefits, they do not provide an overall feature interface considering all

parts in an integrated way. A feature is likely scattered across the source code and tangled

with code of other features (through preprocessor directives) [36]. This way, each #ifdef

block represents one part of the feature. Thus, there is no global understanding of a

given feature. As a consequence, a developer still might introduce bugs when maintaining

features since she cannot safely understand and reason about one complete feature before

changing the code.

To address that, we propose the concept of Emergent Feature Interfaces (EFI) [47],

an evolution of Emergent Interfaces, that consists of inferring feature dependencies by

looking at an entire feature. Instead of knowing about parts of a feature, EFI look for

feature dependencies considering a feature as a “component” which has provided and

required interfaces in order to improve modular reasoning for software product lines. EFI

provide to the developer to see the dependencies of a given feature through a global

interface, which considers all parts of a feature in an integrated way. This way, EFI help

the developer to achieve independent feature comprehensibility. Consequently, she can

change a feature code aware of its dependencies, avoiding breaking the relations among

features. We adapted Emergo to implement our proposal and we evaluate our proposal in

terms of size and precision comparing with EI by using five preprocessor-based systems.

The results of our study suggest the feasibility and usefulness of the proposed approach.

Besides, we observe that modern web applications are multi-language. Under the

developer’s perspective, these systems are complex to maintain since they contain a

collection of heterogeneous artifacts (i.e., distinct artifacts written in different languages),

holding relations among them. Shaw [63] points out that better forms of modularization

and composition are necessary, since web development, in particular, still retains an ad hoc

character with many opportunities for improvement. This can be even worse if these web

1.1 CONTRIBUTIONS 15

applications are software product lines because they contain variabilities in their artifacts.

In this sense, capturing feature dependencies between different kinds of artifacts is difficult.

That is, we still have the feature modularization problem, but now in a multi-language

context. Therefore, we propose an automated technique to support the maintenance

of SPLs based on the Grails framework, which infers feature dependencies between

heterogeneous artifacts, analyzes each dependency, and detects unsatisfied dependencies.

For example, an unmatched code element between a page (.gsp) and a controller (.groovy).

Our analysis uses the idea of emergent feature interfaces to capture feature dependencies

out of a multitude of artifacts written in different languages. We developed an open-source

prototype tool called GSPAnalyzer to implement our technique. To evaluate the proposed

approach, we ran a case study with a multi-language product line named RGMS. The

results brought preliminary evidence that feature dependencies between heterogeneous

artifacts occur in practice and these dependencies can be easily broken if a developer

changes either dependence end.

1.1 CONTRIBUTIONS

This work makes the following contributions:

� The concept of Emergent Feature Interfaces to help developers when maintaining

preprocessor-based software systems, allowing them reason about a feature modularly

(Section 3.2);

� Extension of Emergo to support our approach. It computes and shows EFI after

developers select a given maintenance point, which might be a feature. Emergent

Feature Interfaces provide global feature interfaces containing provided and required

information and a simplified view of the existing dependencies (Section 3.3);

� Comparison between Emergent Feature Interfaces and Emergent Interfaces in terms

of size and precision (Section 3.4);

� A technique to capture feature dependencies between heterogeneous artifacts (Sec-

tion 4.2);

� Implementation of our cross-language automated analysis: GSPAnalyzer (Sec-

tion 4.3);

16 INTRODUCTION

� A case study that brought preliminary evidence concerning the feasibility of our

approach to support modular reasoning for web-based multi-language software

product lines (Section 4.4).

1.2 OUTLINE

The remainder of this dissertation is organized as follows:

� Chapter 2 reviews the main concepts used to understand this dissertation;

� Chapter 3 presents the concept of emergent feature interfaces and our empirical

evaluation;

� Chapter 4 describes our cross-language automated analysis and our case study; and

� Chapter 5 draws our conclusions, summarizes the contributions of this research, and

discusses related and future work.

CHAPTER 2

BACKGROUND

This chapter presents the key concepts we use in this dissertation. First, we present

Software Product Lines (SPLs) and their benefits in Section 2.1. We also discuss how to

implement features in an SPL using a widespread mechanism called preprocessors (or

conditional compilation) in Section 2.2, and show several problems with this technique.

We then present the Virtual Separation of Concerns (VSoC) approach in Section 2.3,

which can address some of these preprocessor problems. Finally, we present the concept

of Emergent Interfaces (EI) in Section 2.4 that minimizes the feature modularization

problem. To do so, it proposes the use of sensitive-feature data-flow analysis [17], avoiding

to explicitly generate and analyze all products using brute-force. Our work in turn uses

sensitive-feature data-flow analysis as service. In other words, we do not implement any

analysis, instead, we choose one data-flow analysis with high performance, provided by

Brabrand et al. [17], and then put it in Emergo. To see the implementation details,

Toledo work describes different ways of implementing data-flow analysis for SPLs [69].

2.1 SOFTWARE PRODUCT LINES

A Software Product Line (SPL) is a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a particular market segment or

mission and that are developed from a common set of core assets in a prescribed way [20].

Core assets are artifacts that can be used to instantiate products [29]. SPL is also a

paradigm to develop software-intensive systems using platforms and mass customization

[56]. Platform represents a set of artifacts that can be combined to derive the products of

an SPL, whereas mass customization is related to the flexibility of individual customization,

i.e., differentiating a product for a specific customer. The idea of SPL is the systematic

and efficient creation of products based on strategic software reuse. By reusing assets, we

can build products through features defined in accordance with customers’ requirements

[56]. A feature can be seen as a prominent or distinctive user-visible aspect, quality, or

characteristic of a software system [30]. In this context, features are commonly used to

17

18 BACKGROUND

specify and distinguish product line variants [70]. Figure 2.1 illustrates the commonalities

and variabilities of a car.

Figure 2.1: Characteristics of a car.

Feature-oriented domain analysis (FODA) method [30] is one of the first contributions

to represent and manage the variability of a software system in terms of features. In

short, this notation allows us to reason on the variability of an SPL. Features are likely

represented in a feature model, typically in the form of a feature diagram with its

constraints. Feature model defines the legal combinations of features of a product line [30].

A feature diagram in turn is a visual notation of a feature model. To better illustrate this

approach, Figure 2.2 depicts the feature diagram of the car example.

Figure 2.2: Car feature diagram.

As shown in Figure 2.2, a car has diverse types of features. For example, every car

contains a transmission that can be automatic or manual as well as a motor. However,

2.1 SOFTWARE PRODUCT LINES 19

not all cars have air conditioning. As matter of fact, Kang et al. [30] define three types of

relationships in a hierarchical decomposition of features:

� Mandatory. Feature must be selected in all variants, unless that its parent is

optional;

� Optional. Feature may be present or not in a product (empty circle);

� Alternative. Features are mutually exclusive. Thus, only one feature can be

selected for a given product (empty arc).

In addition to the parental relationships between features, the FODA notation allows

us to set feature constraints: (i) requires - the selection of a feature in a product implies

the selection of another, and (ii) excludes - two distinct features cannot be part of the

same product.

2.1.1 Benefits

Many companies are adopting the SPL approach because of these following benefits [20, 56]:

� Reduction of development costs. SPLs are meant to reuse artifacts so that

individual products are not developed from scratch. This implies in cost reduction.

Nevertheless, we need to design and implement the core assets in the first place so

that we can reuse them afterwards. In other words, in the beginning the SPL design

has a high cost. However, empirical studies reveal that this initial investment pays

off when having three products [20];

� Enhancement of quality. We have more opportunities to find bugs and fix them

since the core assets are reviewed and tested in each product, increasing the quality

of the products;

� Reduction of time-to-market. In initial stages, the time-to-market is high since

we first need to design and develop the core assets. But, it is shortened after the

core assets are built because we can reuse these artifacts for building new products.

There are many techniques to support the development of SPL: preprocessors [35,

58, 21, 40], aspect-oriented programming [11, 34], design patterns [12], programming

transformations [52, 10], among others. In this work, we focus on preprocessors since they

20 BACKGROUND

are common in industrial practice. Thus, the next section presents preprocessors in more

detail.

2.2 PREPROCESSORS

Preprocessor [35, 58, 21, 40] is a well-known technique, mainly in industry, to implement

variability of a software system. Preprocessors are also known as conditional compilation.

As its own name suggests, after preprocessing the source code, the compiler decides

which code blocks should be compiled based on directive tags (or preprocessor variables).

Listing 2.1 depicts part of the code of a feature from the Lampiro product line, called

BT PLAIN SOCKET. Notice that we encompass the feature code by using an #ifdef

preprocessor directive. To build a product with the BT PLAIN SOCKET feature, we

define the BT PLAIN SOCKET tag and let the compiler consider the code for compilation.

Otherwise, the compiler ignores the code, which means we are building a product without

the BT PLAIN SOCKET feature.

1 xmlStream = new SocketStream () ;

2 . . .

3 // #i f d e f BT PLAIN SOCKET

4 Channel connect ion = new SocketChannel (” socke t : // ” + c fg . getProperty (Conf ig

.CONNECTING SERVER) , xmlStream) ;

5 // #e n d i f

6 . . .

7 ((SocketChannel) connect ion) .KEEP ALIVE = Long . parseLong (c f g . getProperty (

Config .KEEP ALIVE)) ;

Listing 2.1: Code snippet from the Lampiro product line. Lampiro uses preprocessors to

implement features.

Besides Lampiro, real software systems use preprocessors, e.g., Apache web server,

Linux and FreeBSD operating systems, VIM text editor, GIMP graphics editor, and gcc

compiler [40]. However, a lot of developers face several problems using preprocessors

[65, 23, 39, 33]. Despite their widespread usage [40, 59], preprocessors obfuscate the source

code reducing comprehensibility, making maintenance error-prone and costly [65, 38].

Besides that, preprocessors do not provide support for separation of concerns. In the

literature, #ifdef directives are even referred as “ifdef hell” [24, 43]. This way, the

2.3 VIRTUAL SEPARATION OF CONCERNS 21

developer might introduce errors in an SPL when changing a feature code, because one

cannot safely reason about a feature without looking at the code of other features. For

example, the variable that is defined in line 4 of Listing 2.1 and used outside the #ifdef

block. Detecting these errors is difficult because we need to eventually compile and run a

product with the problematic feature combination.

2.3 VIRTUAL SEPARATION OF CONCERNS

Virtual Separation of Concerns (VSoC) [35] has been used to address some of these

preprocessor problems by allowing developers to hide feature code not relevant to the

current maintenance task. The main idea behind VSoC is to allow developers to focus on

a feature without being distracted by the other features. This approach is called “virtual”

because there is no physical separation of the feature code. The feature code are still

there, scattered and tangled.

In terms of implementation, Kästner et al. developed a tool named CIDE (Colored

IDE) [33], an Eclipse plugin, that associates background colors with the statements that

belong a feature. Instead of preprocessor directives, such as #ifdef and #endif, visual

colors are used as annotation. The tool simply collapses the feature code, hiding it from

the user, even though it is still there in the original place. Figure 2.3 shows a screenshot

of CIDE. Notice that CIDE mixes the respective background colors to handle overlapping

features and exhibits the visual representations directly in the editor.

To avoid the syntax errors that can occur when using preprocessors, CIDE only allows

disciplined annotations. Essentially, developers can annotate coarse-grained structures,

such as complete assignments and declarations, because it is not possible to mark every

token of the source code. Additionally, CIDE provides a product-line-aware type system

that guarantees that a well-typed SPL produces only well-typed variants [32].

Although VSoC avoids code pollution, it does not modularize features since developers

do not know anything about hidden features. There is no information about how a given

feature interacts with the others. As matter of fact, different features eventually share the

same variables. Thus, maintenance in one feature might break another ones.

22 BACKGROUND

Figure 2.3: CIDE screenshot (extracted from [2]).

2.4 EMERGENT INTERFACES

To minimize the feature modularization problem, researchers propose Emergent Interfaces

(EI) [58] that capture dependencies between part of a feature that a developer is maintaining

and the remaining ones. This approach is called “emergent” because the interfaces emerge

on demand to inform the developers about the possible impacts during a maintenance

task. EI have a floppy structure, i.e., not predefined. The idea of EI aims to establish

contracts between parts of features to prevent developers from introducing errors into the

other features. In addition, this approach still has the benefits of VSoC in which allows

the developers to focus on a feature without the distraction caused by the code of other

features [57].

The authors developed a prototype tool named Emergo to implement the concept

of emergent interfaces [61]. Emergo is an Eclipse plug-in that computes dependencies

between parts of features in preprocessor-based systems. Figure 2.4 depicts the Emergo

in execution.

As we can see, Emergo provides two views based on table and graph to show emergent

interfaces. Besides that, it is aware of the feature model to capture only actual dependencies.

2.4 EMERGENT INTERFACES 23

Figure 2.4: Emergo screenshot (extracted from [4]).

Emergo can compute EI between methods or within a single method since it provides

inter-procedural and intra-procedural data-flow analyses [16, 69]. Generally speaking,

inter-procedural analysis catches data dependencies from a method to the others. Intra-

procedural analysis in turn computes dependencies exclusively within a given method.

We present the EI concept in more detail, comparing it with our approach, in Chapter 3.

CHAPTER 3

EMERGENT FEATURE INTERFACES

As we discussed in Chapter 1, Virtual Separation of Concerns (VSoC) [35] reduces some

of the preprocessor drawbacks by allowing developers to hide feature code not relevant

to the current maintenance task. VSoC provides to the developer a way of focusing on

a feature, which is important for her task at the moment [33]. However, this approach

is not enough to provide feature modularization, which aims at achieving independent

feature comprehensibility, changeability, and development [51]. In other words, there is

no proper modular support from a notion of interface between features since a developer

does not know anything about hidden features. Consequently, she might introduce errors

in the software product line when changing a feature code, because one cannot safely

reason about a feature without looking at the code of other features. To minimize this

problem, researchers propose Emergent Interfaces (EI) [58, 57] to capture dependencies

between part of a feature that a developer is maintaining and the other features. Yet,

they do not provide an overall feature interface considering all parts in an integrated

way. This approach only considers parts of a feature at a time. Thus, there is no global

understanding of a given feature. As a consequence, a developer could easily miss feature

dependencies since she cannot understand and reason about one complete feature before

changing the code.

To solve the briefly discussed problem, in this chapter we present our proposal that

complements Emergent Interfaces. Instead of considering only parts of a feature, we

capture dependencies from an entire feature for improving modular reasoning for software

product lines.

3.1 MOTIVATION

Emergent Interfaces reduce the feature modularization problem by capturing data de-

pendencies between a maintenance point and parts of other feature implementation of

a software product line [58]. Using this approach, the developer can maintain part of a

feature being aware of the potential impacts in others [59]. Nevertheless, we show that EI

25

26 EMERGENT FEATURE INTERFACES

do not suffice to provide modular reasoning for software product lines, since she cannot

understand and reason about one complete feature before changing the code.

According to Cataldo et al. [19], companies have adopted feature-driven development

approach, which consists of implementing software systems based on features, to enhance

development flexibility, to facilitate formal modeling of systems and even to lead to higher

levels of quality. Thus, requirements are driven by features. A maintenance task might

require a new feature implementation or only change an existing one (e.g., for fixing

bugs). But, to accomplish a maintenance task, the developer needs to understand the

feature assigned for her. Features tend to crosscut the code base [40]. So, developers

could easily miss feature dependencies when maintaining feature without proper modular

support from a notion of interface between features. In fact, developers usually do not

have enough knowledge for changing the code in order to fix bugs [72]. For instance, in

a study on incorrect bug-fixes from large operating systems,1 27% of the incorrect fixes

are made by developers who have never touched the source code files associated with the

fix [72]. With this lack of knowledge, developers can introduce errors when changing a

feature code, making maintenance even more expensive. Maintenance and enhancement

of software systems is expensive and time consuming [42]. Alone understanding of the

software system stands for 50% to 90% percent of the maintenance cost [66]. Therefore,

providing feature interfaces would contribute to improving the modular reasoning and

reducing the high cost of software maintenance and evolution.

In this context, we present two maintenance scenarios in order to illustrate the problems

mentioned above and addressed in this work. First, consider a JCalc2-based product line

of a standard and a scientific calculator written in Java. The code of the product line is

available in the online appendix. We transform the JCalc project into an SPL to utilize it

only as a running example having mandatory, optional and alternative features; we do not

consider this product line in our evaluation. The class JCalc contains the main method

responsible for executing the calculator (cf. Listing 3.1).

1 public stat ic void main (St r ing args []) {
2 // . . .

3 //#i f d e f PT BR

4 t i t l e = ” JCalc − Calculadora Padrão e C i e n t ı́ f i c a ” ;

5 //#e n d i f

1including Linux, OpenSolaris, FreeBSD and also a mature commercial OS
2http://jcalculator.sourceforge.net/

http://jcalculator.sourceforge.net/

3.1 MOTIVATION 27

6 // . . .

7 //#i f d e f GUI

8 JFrame frame = new JFrame (t i t l e) ;

9 i n i t R e s o l u t i o n (frame) ;

10 //#e n d i f

11

12 //#i f d e f LOOKANDFEEL

13 initLookAndFeel (frame) ;

14 //#e n d i f

15

16 //#i f d e f GUI

17 frame . addWindowListener (new WindowAdapter () {
18 public void windowClosing (WindowEvent e) {
19 System . e x i t (0) ;

20 }
21 }) ;

22 JCalcStandardFrame myFrame = new JCalcStandardFrame () ;

23 JPanel myPane = myFrame . getPane () ;

24

25 frame . getContentPane () . add (myPane , . . .) ;

26 frame . pack () ;

27 frame . s e t V i s i b l e (true) ;

28 //#e n d i f

29 }

Listing 3.1: JCalc.java

As we can see, this method has three features: PT BR, GUI, and LOOKANDFEEL. Notice

that the features are tangled along the main method. Also, the feature GUI is scattered

across the method twice.

Now, suppose that a developer needs to maintain the feature GUI. First of all, she

should look at the current feature to understand its entire role, achieving independent

feature comprehensibility. To do so, she must get the emergent interfaces for each code

encompassed with #ifdef GUI. The emergent interfaces related to the first and second

#ifdef GUI statements, generated from intra-procedural analysis, are shown in Figure

3.1, respectively.

From now on, we only refer to emergent interfaces built out of intra-procedural analysis

to better understand the problems addressed in this work. We explain how EI compute

28 EMERGENT FEATURE INTERFACES

Figure 3.1: EI for #ifdefs GUI

dependencies in Section 2.4. The first emerged information alerts the developer that she

should also analyze the feature LOOKANDFEEL. Under the VSoC perspective, the developer

does not know that this dependency exists since VSoC hides feature code not relevant to

the current maintenance task, in this case, the maintenance in the feature GUI. So, when

using EI, the developer is aware of the dependencies that include the other feature parts.

It is important to stress that GUI is scattered in other classes as well, but we omitted

them for simplicity.

Besides that, the emergent interface informs the developer that there is no feature

dependencies involving the feature GUI and the remaining ones. However, this information

misses that GUI requires the title variable, which is defined in PT BR, as can be seen in

Listing 3.1. In other words, EI do not take into consideration required interfaces.

In addition to the problem of required interfaces, EI have another limitation regarding

the amount of preprocessor directives per feature. We illustrate that in a second scenario

extracted from the text editor Vim.3 Vim is a highly configurable text editor built to

enable efficient text editing. The text editor Vim has approximately 385 800 LOC and

contains 778 features [37].

Listing 3.2 depicts the source code for syntax highlighting in Vim. The highlight changed

function translates the ‘highlight’ option into attributes and sets up the user highlights.

According to Listing 3.2, the highlight changed function has many preprocessor directives

(#ifdefs), which represent the features USER HIGHLIGHT and FEAT STL OPT. Notice that

these preprocessor directives do not follow follow a comment (“//”) because C and C++

compilers come with C preprocessor (cpp) that natively recognizes preprocessor macros

and statements.

3http://www.vim.org/

http://www.vim.org/

3.1 MOTIVATION 29

1 int h igh l i gh t changed () {
2 // . . .

3 #i f d e f USER HIGHLIGHT

4 char u u s e r h l [1 0] ;

5 #i f d e f FEAT STL OPT

6 int id SNC = −1;

7 int h lcnt ;

8 #e n d i f

9 #e n d i f

10 // . . .

11 #i f d e f USER HIGHLIGHT

12 // . . .

13 #i f d e f FEAT STL OPT

14 // . . .

15 #e n d i f

16 // . . .

17 #i f d e f FEAT STL OPT

18 h i g h l i g h t s t l n c [i] = 0 ;

19 #e n d i f

20 // . . .

21 #i f d e f FEAT STL OPT

22 struct hl group * h l t = HL TABLE() ;

23 #e n d i f

24 // . . .

25 #i f d e f FEAT STL OPT

26 // . . .

27 #e n d i f

28 // . . .

29 #i f d e f FEAT STL OPT

30 h i g h l i g h t g a . ga l en = hlcnt ;

31 #e n d i f

32 #e n d i f /* USER HIGHLIGHT */

33 return OK;

34 }

Listing 3.2: The highlight changed function from the text editor Vim

In this context, suppose that a developer should study the feature FEAT STL OPT in

order to implement a user requirement. Thus, she has to make use of the emergent

interfaces generated for each code block encompassed with #ifdef FEAT STL OPT. After

30 EMERGENT FEATURE INTERFACES

that, she needs to join all interfaces gotten previously. In this function, she would have to

observe six interfaces (see Listing 3.2). This becomes worse as the scattering increases.

Recently, researchers [40] analyzed 40 software product lines implemented in C and they

claim that a significant number of features incur a high scattering degree and the respective

implementation scatters possibly across the entire system. It would be often hard to the

developers to join all emergent interfaces from every part of a feature. Thus, this process

is time consuming and error-prone, leading to lower productivity.

Because of the potentially hard work to get all emergent interfaces, the developer might

forget some relevant information for maintaining the feature under her responsibility.

For instance, in our scenario, the developer might overlook the information that the

feature FEAT STL OPT provides hlt pointer to another feature, as can be seen in Listing 3.2.

As a consequence, she might introduce bugs in some SPL variant leading to late error

detection [33], since we can only detect errors when we eventually happen to build and

execute a product with the problematic feature combination. This means that the overall

maintenance effort increases. All things considered, we have other problem related to

emergent interfaces we only have access to partial, and possibly redundant, emergent

interfaces at a time.

In addition to EI of feature parts, there is an information overload since the interfaces

are computed one by one and, then, the developer has to join them. This joining process

might be expensive and further some of these interfaces might have duplicate information.

In face of that, the developer is susceptible to consider code unnecessarily, wasting time.

For instance, consider Listing 3.3 and suppose we would like to maintain FEATURE A

using EI. To do so, first we need to select the line 3 and then the line 7 to get the emergent

interfaces before indeed changing the code. However, the respective emergent interfaces

present duplicate information, as it can be seen in Figure 3.2. The following section

describes how we address these problems.

1 void method () {
2 #i f d e f FEATURE A

3 int a = 0 ;

4 #e n d i f

5

6 #i f d e f FEATURE A && FEATURE B

7 int b = a ;

8 #e n d i f

3.2 THE CONCEPT OF EMERGENT FEATURE INTERFACES 31

9

10 #i f d e f FEATURE C

11 m(b) ;

12 #e n d i f

13 }

Listing 3.3: Code with overlapping features

Figure 3.2: EI with duplicate information

3.2 THE CONCEPT OF EMERGENT FEATURE INTERFACES

To solve the aforementioned problems, we propose the idea of Emergent Feature Interfaces

(EFI) [47], an evolution of the Emergent Interfaces approach, which consists of inferring

contracts among features and capturing feature dependencies by looking at a feature

completely. It is important to stress that our approach still has the benefits of EI. In

addition to the notion of interface between parts of features, we provide developers to

understand and reason about one complete feature. So, depending on maintenance task,

the developer can use EI or EFI. This means that the developer should use EI if she knows

the exact maintenance point, showing that she understands the feature code. Otherwise,

she should use EFI to firstly understand the feature and reason about it before changing

the code. From a notion of interface between features, we can detect feature dependencies

by using sensitive-feature data-flow analysis [17]. So far, we do not detect all types of

dependencies since we focus on capturing data dependencies, more precisely, def-use chains.

But, our proposal can be extended to compute other kinds of dependencies, including

exceptions, control flows, and approximations of pre and post conditions. That way, we

use a broader term for contracts than “Design by contract” proposed by Meyer [49] since

we infer the contracts by analyzing the code, and do not consider invariants, pre and post

32 EMERGENT FEATURE INTERFACES

conditions.

We establish contracts between the feature being maintained and the remaining ones

through the interfaces. The concept of interfaces allows us to know what a given feature

provides and requires from others. Considering the first interface of Figure 3.1, EI do not

inform us about the required interfaces, but the feature GUI requires the title variable from

the feature PT BR. Therefore, we improve EI by adding required interfaces for computing

the emergent feature interfaces.

In addition to establishing contracts, EFI obtain the existing dependencies between

the feature we are maintaining and the remaining ones, taking into account the location

of them. These dependencies occur when a feature shares code elements, such as variables,

with others. In general, this happens when a feature declares a variable that is used

in another feature. For example, in our first motivating example (see Listing 3.1), the

variable title is initialized in PT BR (alternative feature) and, subsequently, used in GUI

(mandatory feature). We use feature-sensitive data-flow analysis [16] to perform the same

analysis on all possible products without explicitly having to generate them. In doing so,

we capture feature dependencies and, then, show them to the developers. In short, we

keep data-flow information for each possible feature combination.

To clarify, we present how emergent feature interfaces work. Consider the example

with regard to the JCalc product line of Section 3.1, where a developer is supposed to

maintain the feature GUI. As our proposal derives from EI, the developer still needs to

select the maintenance point but with a slight difference since she can also ask about

a determined feature. In other words, the developer can select both a code block and

a feature declaration (i.e. #ifdef FeatureName). The developer is responsible by the

selection as illustrated by the dashed rectangle in Figure 3.3, in this case, #ifdef GUI.

Then, we perform code analysis based on data-flow analysis to capture the dependencies

between the selected feature and the other ones. Finally, the feature interface emerges.

The EFI in Figure 3.3 states that maintenance in the feature GUI may impact products

containing LOOKANDFEEL. This means that GUI provides the actual frame value to the

feature LOOKANDFEEL and requires the title value from PT BR. Reading this information,

the developer is now aware of the existing relations between the GUI and LOOKANDFEEL

features and also between GUI and PT BR. The emerged information has been simplified

because the developers only need to know the dependencies inter-feature, not intra-feature.

That is, EFI only show dependencies between the feature he is maintaining and the

remaining ones. We can check this in Listing 3.1 where the variable frame is being

3.2 THE CONCEPT OF EMERGENT FEATURE INTERFACES 33

Figure 3.3: Emergent feature interface for the feature GUI

utilized in other places but the emergent feature interface (see Figure 3.3) only exhibits

frame dependency concerning the feature LOOKANDFEEL. Also, we address the problem

regarding required interfaces. Figures 3.1 and 3.3 show the difference between EI and EFI.

Therefore, she focuses on information that should be analyzed avoiding considering code

unnecessarily, wasting time.

It is important to highlight that EFI compute both direct and indirect dependencies

among features. For example, consider a variable A is set in FEATURE 1 and used

in FEATURE 2 to assign its value in other variable B (B = A). Finally, suppose that

FEATURE 3 uses B. In this case, EFI notify the developer that FEATURE 1 has a

direct dependency to FEATURE 2 (through A) as well as FEATURE 2 to FEATURE 3

(through B). Besides that, EFI provide the indirect dependency between FEATURE 1

and FEATURE 3 since FEATURE 3 depends on FEATURE 1 indirectly (transitivity

property).

Note that the code might have many other #ifdefs making the interface’s construction

more complex. According to the results presented by the authors of the concept of EI,

every SPL has methods with directives, but the percentage of methods with preprocessor

directives vary across the software systems [59].

Assuming that a developer is unaware of a feature, and taking into account the features

tend to crosscut the SPL code, it is better to look at the dependencies of an entire feature

34 EMERGENT FEATURE INTERFACES

instead of seeing them by part. In doing so, it is easier to the developers to understand a

given feature through a macro vision than to get all interfaces one by one and, then, join

them. For instance, in our second scenario (cf. Section 3.1) there are several #ifdefs and,

in special, the feature FEAT STL OPT is scattered across the highlight changed function (cf.

Listing 3.2). Instead of the developer having to repeat six times the #ifdef FEAT STL OPT

selection to get all interfaces, we provide an integrated way to avoid this information

overload. This way, the developer only needs to select #ifdef FEAT STL OPT one time,

then the data-flow analysis is performed and, finally, the feature interface is emerged (as

shown in Figure 3.4). As we can see, no dependencies were found between FEAT STL OPT

and the remaining features. Again, when reading this information, the developer already

knows that the feature FEAT STL OPT neither requires any variable nor provides to other

features.

Figure 3.4: Emergent feature interface for the feature FEAT STL OPT

Therefore, our idea complements EI in the sense that we evolve this approach taking

into account a feature as a module. In that sense, interfaces enable modular reasoning

[36] since we can understand a feature in isolation without looking at other features. In

addition to the notion of interface between parts of features, EFI provide a global interface

that presents the existing dependencies of a given feature, preventing developers to miss

any feature dependency and, consequently, to introduce errors into the SPL. This way, EFI

help the developer to achieve independent feature comprehensibility. As a result, she can

change a feature code aware of its dependencies, avoiding breaking the relations among

3.3 IMPLEMENTATION 35

features [51]. This improvement is feasible and useful to improve modular reasoning for

software product lines, with the potential of improving productivity.

We present how EFI work in terms of implementation in the next section.

3.3 IMPLEMENTATION

To implement our approach, we adapted a tool called Emergo, an Eclipse plugin, originally

proposed by Ribeiro et al. [61] for improving maintainability of preprocessor-based product

lines. It is available online at: https://github.com/jccmelo/emergo.

Figure 3.5 depicts both the extended Emergo’s architecture and the data-flow from

developer’s selection up to the interface visualization. The architecture follows a het-

erogeneous architectural style based on the layered (GUI, Core, and Analysis) style and

independent components. To show the process for getting EFI, we explain step by step

the activity diagram-like (as seen in Figure 3.5).

First of all, the developer selects the maintenance point that indicates what code block

or feature she is interested at the moment. Then, the component GenerateEIHandler

sets up the classpath from the accessible information at the project. Besides that, it gets

the compilation unit in order to know whether it is a Java or a Groovy project, treating

each type of project in accordance with its peculiarities.4 Meanwhile, we associate the

maintenance point selection with a feature, or a combination of features, which we denote

as a feature expression. Then, we compute the Abstract Syntax Tree (AST) from the

Eclipse infrastructure. After that, we mark each tree node that represents the selected

code by the developer. This marking of the AST nodes from text selection is important

to bind AST node on Soot’s Unit later. In Soot, the interface Unit represents a generic

statement or command in any of the available intermediate representations, including

Jimple.

Incidentally, Soot [71] is a framework for analysis and optimization of Java code. It

accepts Java bytecode as input, converts it to one of the intermediate representations,

applies analyses and transformations, and converts the results back to bytecode. Soot

uses intermediate representations of programs, with the most prominent being Jimple, a

typed 3-address representation designed for optimizations.

4http://groovy.codehaus.org/Differences+from+Java

https://github.com/jccmelo/emergo
http://groovy.codehaus.org/Differences+from+Java

36
E

M
E

R
G

E
N

T
F

E
A

T
U

R
E

IN
T

E
R

F
A

C
E

S

Figure 3.5: Emergo’s architecture and activity diagram-like

3.3 IMPLEMENTATION 37

Soot also provides a tagging mechanism that allows one to attach arbitrary information

to Units. We exploit this to attach feature information to individual Jimple statements.

As we consider SPLs, we use the Soot framework to execute feature-sensitive data-flow

analysis [17] and then capture feature dependencies. This data-flow analysis is feature-

sensitive because it avoids to explicitly generate all products from an SPL, i.e., without

using brute-force. That quickly becomes prohibitive as the number of possible products

increases due to the combinatorial nature of SPLs.

Before we apply data-flow analysis, the component Soot gets the classpath provided

by the GenerateEIHandler and configures it by putting all bytecode in a specific place.

Then, Soot loads the class that the developer is maintaining. In other words, Soot

gets the class bytecode and converts it into Jimple, which is the main intermediate

representation of the Soot.

In addition to load the class, we use the bridge design pattern to deal the difference

between Java and Groovy independently. This way, we can bind AST nodes on Soot

Units, which correspond to statements. After this step, we have a mapping between AST

nodes and statements and, hence, we are able to get the units in selection.

This mapping is passed to the Instrumentor that iterates over all units, looking up

for their feature expressions, adding a new Soot Tag to each of them, and also computing

all the feature expressions found in the whole body. Units with no feature expression

receive an empty Soot Tag. The idea is to tag information onto relevant bits of code so

that we can then use these tags to perform some optimization in the dependency graph at

the end.

To clarify, from now on, consider the sample code snippet in Listing 3.4 that has two

features (A and B). A holds a variable definition (int a = 0;), B in turn uses this variable.

1 public stat ic void main (St r ing [] a rgs) {
2 //#i f d e f A

3 int a = 0 ;

4 //#e n d i f

5

6 //#i f d e f B

7 m(a) ;

8 //#e n d i f

9 }

Listing 3.4: Sample code.

38 EMERGENT FEATURE INTERFACES

After compiling the source code to Jimple and instrumenting it using Soot, we get the

tagged code as shown in Figure 3.6. Note that the Jimple statement (b0 = 0;) represents

the assignment int a = 0; in the source code (cf. line 3). In addition, we can observe

that the statement (b0 = 0;) belongs to a feature expression, in this case, A.

Figure 3.6: Jimple annotated.

The instrumentation process consists of annotating the statements that are encom-

passed by an #ifdef F, where F could be any feature or expression of features, with the

boolean expression [[F]]. Generally speaking, an expression of features represents the set

of configurations that a statement is bound to. Whenever a statement is not encompassed

with preprocessor directives, i.e., it does not belong to any feature, so it should be present

in all possible configurations.

After that, we build the Control Flow Graph (CFG) and, then, run reaching definitions

analysis through the component LiftedReachingDefinitions that uses the Soot data-

flow framework. The Soot data-flow framework is designed to handle any form of CFG

implementing the interface soot.toolkits.graph.DirectedGraph. It is important to

stress that our reaching definitions analyses are feature-sensitive data-flow analysis [17].

This way, we keep data-flow information for each possible feature combination. Figure 3.7

illustrates the result of the reaching definitions analysis for the code snippet in Listing 3.4.

As we can see, our example has four possible product configurations, which represent the

power set of the features that are inside the method. So, 0 represents a product without

A and B, 1 for A selected, 2 for B selected and 3 for both features selected, i.e., A and B.

Observe also that the value of b0 (= 0) reaches the method call to configuration 3, which

means that the A and B features are defined to the product.

3.3 IMPLEMENTATION 39

Figure 3.7: Reaching definitions analysis result.

Then, the component DependencyGraphBuilder accepts the mapping between

AST nodes to statements, units in selection, CFG, and all possible feature combinations

as input, iterates over the CFG for creating the nodes from units in selection, which

represent an use or a definition. If the node is a definition we get all uses and for each use

found we create one directed edge on the dependency graph which represents the EFI.

Otherwise, we just get its definition and connect them. Recalling that both paths support

transitivity property.

After the dependency graph is populated, we prune it to avoid duplicate edges and

having more than one edge between two given nodes.

Finally, the component EmergoGraphView shows the dependency graph in a visual

way where the developer becomes aware of the feature dependencies, preventing her to

introduce errors in the SPL. Figure 3.8 depicts the dependency graph for our running

example. The value of a (= 0) reaches m(a) only if the features A and B are selected.

Like Emergo, besides this graph view, we also provide a table view. These information

alert the developer about what interfaces might be broken if she changes the code in

specific places.

Thus, selecting the statement int a = 0; as a maintenance point, the emergent

feature interface for this selection is presented in Figure 3.9. In this case, the interface

would be the same when selecting the feature declaration (#ifdef A). This interface

informs the developer that the B feature can be impacted if she changes the a variable

belonging to the A feature.

40 EMERGENT FEATURE INTERFACES

Figure 3.8: Dependency graph.

To sum up our contributions on Emergo, we remove the Johnni Winther’s compiler,5

a variability-aware Java compiler, and put the Soot framework on its place, because Soot

is being maintained by the community at Sable Research Group.6 Then, as Soot is able

to analyze Java bytecode, we enhance Emergo to capture feature dependencies both in

Java and in Groovy code, since they compile to Java bytecode. Besides that, we deal with

different aspects between Java and Groovy, making variability points on code level, as

shown in Figure 3.5 (through the decision nodes).

Figure 3.9: EFI for our running example.

5https://github.com/jccmelo/emergo/blob/master/trunk/Emergo%20-%20EI/lib/

jw-compiler.jar
6http://www.sable.mcgill.ca/soot/

https://github.com/jccmelo/emergo/blob/master/trunk/Emergo%20-%20EI/lib/jw-compiler.jar
https://github.com/jccmelo/emergo/blob/master/trunk/Emergo%20-%20EI/lib/jw-compiler.jar
http://www.sable.mcgill.ca/soot/

3.3 IMPLEMENTATION 41

Figure 3.10 shows the adapted Emergo in execution. It is important to highlight

that under the intra-procedural perspective all functionalities of the former Emergo

are preserved. In other words, the developer can select a maintenance point (be it an

assignment or not) as well as a feature, the latter can be seen in the screenshot.

Figure 3.10: Extended Emergo’s screenshot.

3.3.1 Limitations and Ongoing work

Our tool currently implements emergent feature interfaces, returning one integrated

interface per feature. However, we so far consider simple preprocessor directives. That

is, our preprocessor only recognizes feature expressions (e.g., #if and #ifdef) with one

feature associated. Improving our preprocessor is an ongoing work.

Another limitation is related to capture emergent feature interfaces for Groovy software

systems. Although Groovy uses a similar syntax to Java, Groovy has its particularities.

In doing so, our tool knows about some Groovy statements like an assignment with the

def keyword, commands without semicolons. But, for example, we have not supported

lambda expressions yet.

Besides that, we capture only data dependencies among features, but our proposal

can be extended to compute other kinds of interfaces, including dependencies related to

42 EMERGENT FEATURE INTERFACES

exceptions, control flows, and approximations of pre and post conditions. We also might

use the AST to capture feature dependencies between a method declaration and its calls,

for example.

We use Soot to execute feature-sensitive data-flow analysis [17] and then capture

feature dependencies, but this analysis is intra-procedural. Thus, we need to plug in our

tool to the framework Heros,7 which is a general framework for solving inter-procedural

problems in a flow-sensitive manner. This way, another ongoing work is to provide

inter-procedural analysis to capture feature dependencies among classes, packages, and

components since a feature can be scattered in different places.

Moreover, we should work in our algorithm to provide simplified views to the developers,

dealing with possible huge interfaces.

3.4 EVALUATION

To assess the effectiveness and feasibility of our approach, we conducted a simple empirical

study following guidelines from Runeson and Host [62]. Our evaluation addresses these

research questions:

� RQ1: Is there any difference between Emergent Interfaces and Emergent Feature

Interfaces in terms of size and precision?

� RQ2: How do Emergent Feature Interfaces’ dependency detection compare to

Emergent Interfaces?

3.4.1 Study settings

Our study includes five preprocessor-based systems in total. All of these software product

lines are written in Java and contain their features implemented using conditional com-

pilation directives. These software product lines contain several features. For instance,

the Lampiro product line has 11 features, MobileMedia in turn contains 14 features [22].

Lampiro is a product line of instant messaging for mobile devices. MobileMedia is a

product line that provides mobile devices manipulate photos, musics, and videos [25].

Among these systems, Best lap and Juggling product lines are commercial products.

Hence, their source code is not available. At last but not least, Mobile-rss is a software

product line related to mobile feed application domain.

7http://sable.github.io/heros/

http://sable.github.io/heros/

3.4 EVALUATION 43

We reuse the data produced8 by other research [59], whose authors proposed the

EI concept. Table 3.1 shows the product lines, including their characteristics such as

the amount of preprocessor directives utilized in the entire product line and number of

methods. We count preprocessor directives like #ifdef, #ifndef, #else, #if, and so on.

MDi stands for number of methods with preprocessor directives, for example, Mobile-rss

has 244 methods out of 902 that contain preprocessor directives (27.05%). MDe in turn

stands for number of methods with feature dependencies. In particular, we use MDe

metric to select the methods with feature dependencies to answer our research questions.

According to the presented data in Table 3.1, these metrics vary across the product lines.

Table 3.1: Characteristics of the experimental objects [59].

System Version MDi MDe # methods # cpp directives

Best lap 1.0 20.7% 11.95% 343 291

Juggling 1.0 16.71% 11.14% 413 247

Lampiro 10.4.1 2.6% 0.33% 1538 61

MobileMedia 0.9 7.97% 5.8% 276 82

Mobile-rss 1.11.1 27.05% 23.84% 902 819

Given a maintenance point in some of these product lines, we evaluate what is the

difference between EI and EFI. Our aim consists of understanding to what extent the

latter complement the former.

To answer our research questions, we randomly select a subset of methods with feature

dependencies [59] and then compare the results produced by EFI to the results generated

by EI. Note that the same set of selected methods is used to conduct the comparisons

between EFI and EI. From these five experimental objects, we have 446 methods with

preprocessor directives. We randomly select ten methods that contain feature dependencies.

Firstly, we decide to pick two methods per product line because our study includes five

software product lines and we try to balance the selection among them. We also select

the maintenance points in a random way. In doing so, we identify some valid maintenance

points dismissing comment, whitespace and method/class declaration since our data-flow

analysis is intra-procedural. Then, we compute EI and EFI for each maintenance point

chosen. To select these methods and maintenance points, we use RANDOM.ORG.9

8The results are available at: http://www.cin.ufpe.br/~mmr3/gpce2011
9http://www.random.org/

http://www.cin.ufpe.br/~mmr3/gpce2011
http://www.random.org/

44 EMERGENT FEATURE INTERFACES

3.4.2 Results and Discussion

After discussing the study settings, we present the results of our evaluation for each

method with feature dependencies as shown in Table 3.2. For each method selected, the

table shows EI and EFI produced from the maintenance points. It is important to quote

that depending on maintenance point selection the method might have no dependency

among features. Although these ten methods contain feature dependencies, there are

two cases where no dependencies were found, that is, these variables in selection are not

neither used nor defined in another feature.

As can be seen, EI always return ‘No dependencies found!’ in every case that the

maintenance point is not an assignment. Thus, we can confirm that EI miss required

interfaces. On the contrary, EFI take into consideration both provided and required

interfaces. Yet, in a worst-case scenario when a method does not have feature dependencies

the two approaches return the same result (empty interface). For instance, there is no

difference between EI and EFI for the Resource.save method (see Table 3.2). Although

this method has no dependencies, EFI look for the definition of the playerID variable

across the method in order to alert the developer about the required interface (backward

contract) between the feature she is maintaining and the other. In this case, EFI returned

‘No dependencies found!’ because playerID variable is defined at the same feature that

contains its use. Otherwise, EFI would return ‘Requires playerID variable from feature

X’ where X represents the feature name. This type of case happened, for example, at

the constructor of the class ResourceManager where EI did not find any dependencies

whereas EFI did.

Besides that, EI do not provide support for feature selection as a maintenance point.

This is bad since the developer might want to understand a feature as a whole before

applying any change in the code. For example, consider the Best lap product line’s

MainScreen.paintRankingScreen method, if the developer wanted to know what feature

dependencies exist between the feature device screen 128x128 and the remaining ones,

she should select all parts of the feature (one-by-one). This is a potential hard work

depending on the amount of fragments (#ifdefs) of the feature. In this context, our

approach is useful and feasible since EFI provide macro information per feature, improving

modular reasoning for software product lines (see the first line of the Table 3.2).

Another important aspect is the simplified view that EI do not offer to the developers.

For instance, the method PhotoViewController.handleCommand has an imgByte declara-

3.4 EVALUATION 45

tion encompassed with #ifdef sms || capturePhoto. This variable is used in different

places (sms || capturePhoto and copyPhoto). EI show both use places in their message

whereas EFI only alert the developer about dependencies outside the current feature

configuration. This way, the developer only needs to worry about copyPhoto since she is

aware of the feature she is maintaining. Thus, we think that a global interface may help

developers, improving the modular reasoning for software product lines.

In summary, we believe that when the number of feature dependencies increases, our

approach is better than EI because the probability of finding at least one required interface

increases as well. Moreover, whenever the developer needs to understand a specific feature

(i.e., to see its interfaces), the EFI approach is a good option. Thus, the answer to the

first research question, concerning about the difference between EI and EFI, is yes in

cases where the maintenance point is not an assignment, including a particular occasion

when the developer selects a feature such as #ifdef device screen 128x128. On the

other hand, in some cases, our approach loses in terms of size (cf. Table 3.2) because

we compute a global interface for each selected feature. However, EFI have more precise

information than EI. The second question has already been responded along the previous

paragraphs.

Table 3.2: Evaluation results.

System Method Maintenance Point EI EFI

Best lap MainScreen.paintRankingScreen #ifdef device screen 128x128 Do not provide support for this se-

lection!

Provides rectBackgroundPosX, rect-

BackgroundPosY, positionPosX, lo-

ginScorePosX, etc values to root fea-

ture.

Best lap Resources.save dos.writeUTF(playerID); No dependencies found! No dependencies found!

Juggling TiledLayer.paint firstColumn = (clipX -

this.x)/this.cellWidth;

Provides firstColumn value to

game tiledlayer optimize backbuffer

feature.

Provides firstColumn value to

game tiledlayer optimize backbuffer

feature.

Juggling Resouces.load playerLogin = dis.readUTF(); No dependencies found! Requires dis variable from root fea-

ture.

Lampiro ChatScreen.paintEntries int h = g.getClipHeight(); Provides h value to root feature. Provides h value to root feature and

requires g variable from root feature.

Lampiro ResourceManager.ResourceManager while ((b = is.read()) != -1)

{...}
No dependencies found! Requires is variable from GLIDER

feature.

MobileMedia PhotoViewController.handleCommand byte[] imgByte =

this.getCapturedMedia();

Provides imgByte value to config-

urations: [sms || capturePhoto],

and [copyPhoto && (sms || cap-

turePhoto)].

Provides imgByte value to copy-

Photo feature.

MobileMedia SelectMediaController.handleCommandList down = Dis-

play.getDisplay(...);

Provides down value to Photo,

MMAPI and Video features.

Provides down value to Photo,

MMAPI and Video features.

Mobile-rss UiUtil.commandAction m urlRrnItem = null; No dependencies found! No dependencies found!

Mobile-rss RssFormatParser.parseRssDate logger.finest(“date=” +

date);

No dependencies found! Requires date variable from root fea-

ture.

3.4 EVALUATION 47

3.4.3 Additional analysis

We conduct another empirical study to get more evidence in order to assess the effectiveness

and feasibility of our approach. To do so, we follow the process we describe previously.

We use the same five preprocessor-based systems. We randomly select other 24 methods

with feature dependencies and then compare the results from EI and EFI. But, in this

study, we select these methods according to the number of methods with dependencies

(using the MDe metric) for each software product line. In other words, the selection

of the methods to be analyzed is directly proportional to the amount of methods with

feature dependencies. For example, we pick two methods of the Best lap product line

that contains approximately 40 methods with dependencies, whereas we choose only one

method of MobileMedia since it has 16 methods with dependencies. In the same way, we

randomly select the respective maintenance points.

Table 3.3 presents the results of our additional evaluation. For each maintenance point,

this table shows the EI and EFI outcomes, respectively. Again, we reinforce our claim

from previous evaluation that EI accept only assignment as maintenance point (see the

method EncodingUtil.getEncoding in Table 3.3). Developers cannot request interfaces

for method calls, for example. EFI in turn support both assignments and method calls.

Moreover, when using our approach, developers can request interfaces for a given feature

to understand and reason about it completly. For example, the Resource.load method

from Best lap contains a feature named arena that requires the dis variable (see the first

line of the Table 3.3).

Generally speaking, we identify that a maintenance point can be a definition (e.g.,

perfectKickCounter = 0;), an use (e.g., System.out.println(selectedIndex);) or a

feature declaration (e.g., #ifdef ITUNES). It is important to highlight that an assignment

might provide a variable as well as require another one. For instance, the lastWidth =

width; assignment provides lastWidth and requires width, ignoring feature information.

We can check that in Table 3.3.

To sum up, we get more evidence to claim that our approach improves EI. Remembering

that EFI still have the benefits of EI. This way, the developer can select a maintenance

point directly if she knows the specific place that needs to modify (EI). In addition, she

can request interfaces to firstly understand and reason about a determined feature before

changing the code (EFI).

Table 3.3: Additional results.

System Method Maintenance Point EI EFI

Best lap Resources.load #if arena Do not provide support for this se-

lection!

Requires dis variable from root fea-

ture.

Best lap GameScreen.gc loadBVGResources this.anim backupTrackEdge

Straight = new BVGAnima-

tor(..);

No dependencies found! No dependencies found!

Juggling TiledLayer.setStaticTileSet tileImages[index] = tile; No dependencies found! Requires tile variable from nokiaui

feature.

Juggling GameController.processGameUpdate perfectKickCounter = 0; No dependencies found! No dependencies found!

Juggling Ball.animateFlipBall int totalFlipAnimation = 1; Provides totalFlipAnimation value to

root feature.

Provides totalFlipAnimation value to

root feature.

MobileMedia BaseController.goToPreviousScreen if (currentScreenName ==

null || ..)

No dependencies found! Requires currentScreenName vari-

able from root feature.

Mobile-rss HTMLParser.getTextStream #ifdef DLOGGING Do not provide support for this se-

lection!

Requires m fileEncoding,

m docEncoding variables from

root feature.

Mobile-rss EncodingStreamReader.Encoding

StreamReader

m fileEncoding = ”UTF-8”; Provides m fileEncoding value to

DLOGGING feature.

Provides m fileEncoding value to

DLOGGING feature.

Mobile-rss EncodingUtil.getEncoding logger.severe(ce.getMessage(),

..);

No dependencies found! Requires ce variable from root fea-

ture.

Mobile-rss HTMLParser.parseStream String elementName = su-

per.getName();

No dependencies found! No dependencies found!

Mobile-rss HtmlView.handleError Logger logger = Log-

ger.getLogger(”View”);

No dependencies found! No dependencies found!

Mobile-rss RssReaderMIDlet.getTextItem #ifdef DMIDP20 Do not provide support for this se-

lection!

Requires textLabel, text, etc variables

from root feature.

Mobile-rss PageMgr.sizeChanged lastWidth = width; No dependencies found! No dependencies found!

Mobile-rss PageMgr.commandAction #ifdef DTEST Do not provide support for this se-

lection!

No dependencies found!

3
.4

E
V

A
L

U
A

T
IO

N
49

System Method Maintenance Point EI EFI

Mobile-rss KFileSelectorImpl.resetRoots System.out.println(defaultDir); No dependencies found! Requires defaultDir variable from

root feature.

Mobile-rss FeedListParser.parseHeaderRedirect m redirect = true; No dependencies found! No dependencies found!

Mobile-rss RssFeed.init int CATEGORY = 7; No dependencies found! No dependencies found!

Mobile-rss KFileSelectorImpl.displayAllRoots String root =

roots.nextElement();

Provides root value to DTEST fea-

ture.

Provides root value to DTEST fea-

ture.

Mobile-rss RssReaderMIDlet.appendCompatBmk String prevStore =

rss1.getStoreString(true);

No dependencies found! Requires rss1 variable from DCOM-

PATIBILITY1 feature.

Mobile-rss XmlParser.getAttributeValue String value = currentElement-

Data.substring(..);

Provides value to DLOGGING fea-

ture.

Provides value to DLOGGING fea-

ture.

Mobile-rss Settings.load int numRecs = 0; Provides numRecs value to the

DLOGGING and DTEST features.

Provides numRecs value to the

DLOGGING and DTEST features.

Mobile-rss UiUtil.getAddChoiceGroup choiceGroup.setLayout(..); No dependencies found! Requires choiceGroup variable from

root feature.

Mobile-rss RssItunesItem.unencodedSerialize #ifdef DITUNES Do not provide support for this se-

lection!

Provides author, subtitle, and sum-

mary values to root feature.

Mobile-rss KFileSelectorImpl.openSelected System.out.println(selectedIndex); No dependencies found! Requires selectedIndex variable from

root feature.

50 EMERGENT FEATURE INTERFACES

3.4.4 Threats to validity

In this section we present the threats to validity of our simple empirical study.

3.4.4.1 Conclusion validity The metrics used in our evaluation do not suffice to

measure directly to what extent our approach reduces the maintenance cost and improves

the productivity. Although we cannot respond questions like “Is the SPL maintenance

easier when using our approach than using EI?” and, “How feature dependencies impact

on maintenance effort when using EI and EFI?” precisely, we believe that our study is an

approximation to answer these questions because we provide more abstract and accurate

interfaces than EI.

3.4.4.2 External validity Regarding external validity, we use only five software

product lines and analyze 34 methods in total. In spite of that, we select the methods

according to the number of methods with feature dependencies, using the MDe metric.

Thus, the chosen methods are directly proportional to the amount of methods with

dependencies. The results bring preliminary evidence about the feasibility and usefulness

of the proposed approach. We hope that EFI improve EI for other software product

lines. In this sense, we believe that the results might be the same for other methods with

dependencies. However, we acknowledge that more studies are required to draw more

general conclusions.

3.4.4.3 Internal validity To minimize selection bias, we randomly choose 34 methods

and the maintenance points. Yet, we get a subset of the product lines presented by Ribeiro

et. al [59] in order to test our tool. For this, all five product lines selected are written in

Java. Another threat is that we do not have access to the feature model of all SPLs, so

the results can change due to feature model constraints, but we test both approaches (EI

and EFI) of equal manner. Besides that, all interfaces were built from a intra-procedural

perspective. This way, the results would be different with inter-procedural analysis, or

with other types of dependencies like method declarations/method calls, exceptions, and

control flows. Moreover, we manually compute EI and EFI, as shown in Tables 3.2 and

3.3. This can contain some error, but we are familiar with these approaches and we still

revise each generated interface twice.

CHAPTER 4

MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

The number of web applications has increased quickly over the last years. But, up to

now, techniques to support the maintenance of these kinds of systems mostly focus on

single language settings, whereas they are often constructed out of a multitude of artifacts

written in different languages [50]. These systems need better forms of modularization

and composition. Web development, in particular, retains an ad hoc character with many

opportunities for improvement [63]. This can be even worse if these web applications are

software product lines (SPLs) because they contain variabilities in the artifact level. In

this sense, capturing feature dependencies between different kinds of artifacts is difficult.

Thus, we still have the feature modularization problem (cf. Chapter 3), but now in

a multi-language context. With this in mind, we propose a cross-language automated

analysis for improving the maintainability of multi-language software product lines. To

implement our proposal, we develop a prototype tool that uses the idea of emergent

feature interfaces (EFI), described in Chapter 3, to improve the modular reasoning for

multi-language software product lines based on the Grails framework.

In this chapter we discuss how to provide better support to maintain multi-language

software product lines. We focus on researching web application characteristics to build

technological foundations to allow enhanced maintenance support.

4.1 MOTIVATION

Software systems are becoming more decentralized, heterogeneous, and as a consequence,

larger and more complex. They are built out of an amount of artifacts written in different

languages. These artifacts represent all files that are modified in development time of a

given software system such as files holding source code in diverse languages. In this sense,

modern software systems are multi-language. For instance, Eclipse developers tend to

use more than one language for their development work in a project, since approximately

one third of them work with Java, C/C++, JavaScript, and PHP [7]. The survey further

indicates that developers are using JavaScript as a secondary language.

51

52 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

(a) Firefox (b) Netflix Asgard

(c) Git (d) Bootstrap

Figure 4.1: Multi-language software systems and their language composition.

4.1 MOTIVATION 53

In addition, PHP developers report that they are using one to two additional languages,

and again JavaScript is the favorite after PHP [8].

Figure 4.1 shows the language composition of four projects hosted by GitHub.1 These

projects have different domains, sizes, and languages. As we can see, both Bootstrap,

a front-end framework for faster and easier web development, and Netflix Asgard, a

web-based tool for managing cloud-based applications and infrastructure, contains six

distinct languages. Mozilla Firefox in turn has more than 30 languages (see Figure 4.1(a)).

We use the cloc2 tool to count the number of languages for each project. According to

this figure, all of these projects comprise various languages.

Other prominent example of a large multi-language system is the Linux kernel, contain-

ing around 25 languages.3 Additionally, it has over 10,000 configurable features, providing

a lot of variability with regard to hardware platforms and application domains [67].

Besides, complex enterprise software systems are built from several languages. For

example, Dolibarr ERP & CRM,4 an open-source software to manage a professional or

foundation activity, uses more than ten languages, including PHP, JavaScript, Ruby,

among others. OpenERP5 in turn, an open-source enterprise resource planning (ERP)

software, contains 19 languages including configuration files, build scripts, etc. The most

recent versions of OpenERP are mostly implemented as a web application.

Over the last years, we are facing a rapidly growth of the importance and pervasive-

ness of web applications. According to the Eclipse community survey report [9], Web

Applications and Rich Internet Applications are the primary types of software that the

Eclipse developers are involved in developing. Nowadays, they are vital assets of modern

enterprise software [13]. As concrete examples where their importance is visibly confirmed

we have social networking, online banking, e-commerce, and so on.

However, these complex web applications contain development artifacts that have

diverse types of dependencies among fragments of an artifact or entire artifacts. Breaking

these dependencies will generate the same problems that we have already discussed in

Chapter 3. That is, maintenance in a artifact/feature can affect another feature/artifact.

However, these dependencies involving diverse artifacts are not captured by our previous

solution. Thus, we need to extend our proposal to take into consideration other types of

1https://github.com/
2http://cloc.sourceforge.net
3Cloc count of http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.12.6.tar.bz2
4http://www.dolibarr.org/
5https://www.openerp.com/

https://github.com/
http://cloc.sourceforge.net
http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.12.6.tar.bz2
http://www.dolibarr.org/
https://www.openerp.com/

54 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

dependencies such as cross-language dependencies.

In this work, we assume two possible kinds of dependencies. First, we call intra-

artifact dependency when a statement (code fragment) refers to another statement in

the same artifact. Second, whenever code fragments placed in distinct artifacts refer

to each other, we say that this dependency is inter-artifact. In addition, dependencies

might happen even with artifacts of different programming languages. Figure 4.2 depicts

the relationship between two code fragments in the same programming language. Both

Member and Publication classes belong to the model layer, and a member can have many

publications. Although this reference is in the same programming language, it is an

inter-artifact dependency because it involves different files.

1 package rgms . member

2

3 import rgms . p u b l i c a t i o n . Pub l i ca t i on

4 import rgms . p u b l i c a t i o n . ResearchLine

5

6 class Member {
7 stat ic hasMany = [p u b l i c a t i o n s : Pub l i ca t i on]

8 // . . .

9 }

Listing 4.1: Member.groovy

1 package rgms . p u b l i c a t i o n

2 // imports omitted

3

4 abstract class Pub l i ca t i on {
5 de f t i t l e

6 Date pub l i ca t ionDate

7 // . . .

8 }

Listing 4.2: Publication.groovy

Figure 4.2: Relationship between two Groovy classes.

4.1 MOTIVATION 55

Besides that, as web applications become more widespread, sophisticated, and complex,

these fragments might hold dependencies among them in different languages such as HTML-

Java or Java-Groovy and vice-versa as well. For instance, an excerpt of the Netflix Asgard

project’s index page (Listing 4.3) refers to a fragment that belongs to a controller class

(Listing 4.4). Figure 4.3 illustrates this inter-artifact dependency between GSP6 and

Groovy7 code from Asgard.8 The link tag establishes a relation with the list action,

allowing the users to see all managed applications (cf. Figure 4.3).

In fact, this kind of dependency between different languages can be easily broken if a

developer changes either dependence end. For example, imagine a developer renaming

list on line 8 in index.gsp to something other than list. Assuming that the tests do not

get this broken relation, when an end user clicks on this link the software system will

throw an error saying the property ‘list ’ is not found in the ApplicationController class. This

error message is only visible at runtime. This means that the dependency between GSP

and Groovy code is now broken. Observe that a simple change in a string constant (e.g.,

renaming list) breaks a part of the system, making the registered applications inaccessible

and the list definition unused (cf. line 10). In general, today’s integrated development

environments (IDEs) still do not support multi-language software maintenance, since they

do not provide neither static nor dynamic analysis to verify broken dependencies. In

our example, the developer needs to discover by herself that ApplicationController must be

modified as well to accomplish the task. Thus, developers have to look at heterogeneous

artifacts and reason about such dependencies without supporting tools. Most of the IDEs

do not know about dependencies between different languages [53]. Nevertheless, IntelliJ

IDEA provides some cross-language support mechanisms [28]. It provides refactorings,

code completion and error highlighting for specific language combinations, e.g., HTML

and CSS.9 However, these mechanisms are only offered for some exclusive language

combinations since refactorings are completely tied to a particular language for example

[28].

6Groovy Server Pages (GSP) is a presentation language for web applications, similar to JSP.
7Groovy is an object-oriented programming language for the Java platform.
8https://github.com/Netflix/asgard
9http://www.jetbrains.com/editors/html_xhtml_css_editor.jsp?ide=idea

https://github.com/Netflix/asgard
http://www.jetbrains.com/editors/html_xhtml_css_editor.jsp?ide=idea

56 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

1 <html>

2 <head>

3 <meta name=” layout ” content=”main”/>

4 </head>

5 <body>

6 < !−− . . . −−>
7 <td>

8 Manage <g : l ink c o n t r o l l e r=” a p p l i c a t i o n ” action=” l i s t ” t i t l e=” . . . ”>

Appl i ca t i ons</g : l ink>

9 < !−− . . . −−>
10 </td>

11 < !−− . . . −−>
12 </body>

13 </html>

Listing 4.3: index.gsp

1 package com . n e t f l i x . asgard

2

3 // imports omitted

4

5 class A p p l i c a t i o n C o n t r o l l e r {
6

7 de f a p p l i c a t i o n S e r v i c e

8 // . . .

9

10 de f l i s t = {
11 UserContext userContext = UserContext . o f (r eque s t)

12 Lis t<AppRegistrat ion> apps = a p p l i c a t i o n S e r v i c e .

g e t R e g i s t e r e d A p p l i c a t i o n s (userContext)

13 // . . .

14 }
15 // . . .

16 }

Listing 4.4: ApplicationController.groovy

Figure 4.3: Dependency between different languages.

4.1 MOTIVATION 57

To support multi-language web-based software maintenance, we can offer interfaces

to the developers so that they can see the relationships involving interrelated artifacts

in a global view of the system. For instance, suppose that in a web application there

exists two development artifacts in different languages. In order to perform a determined

task, a developer needs to modify one of them. Under today’s tooling, she might not

know about the existing dependencies between the artifacts due to the lack of interfaces

informing about such relations that each artifact holds. Hence, the developer needs to

analyze each artifact to be sure that the maintenance she performed does not break

other artifacts. This manual work is error-prone, and she might forget to look at an

indispensable artifact. This way, she might break some dependencies among different

artifacts since she is not aware of the artifacts impacted. Most of the broken dependencies

are only revealed at runtime, especially in web applications [53, 44]. Figure 4.4 presents

a concrete example, but it is only for illustrating that there is a feature dependency

between different programming languages. In this scenario, a developer changed the

declaration of the method fillMemberDetails by adding one parameter as can be seen in

Listing 4.5. But, she did not know that TestRecord fragment refers to the fillMemberDetails

definition (see Listing 4.6). She could test before committing the code, but due to the

combinatorial nature of software product lines, the problematic feature combination was

not tested. Consequently, she committed the code and sent a pull request. Few days

later, the integration team, responsible by the merges, discovered that the code submitted

breaks one existing dependency between TestRecord and MemberCreatePage (Figure 4.4). The

problematic pull request is available at: https://github.com/spgroup/rgms/pull/199.

Although the IntelliJ IDEA IDE is able to detect this kind of issue, this problem was

found in a web application software product line called RGMS, which aims to manage

members, publications and research lines from a research group. We present the RGMS

in more detail in Section 4.1.1.

This kind of problem, which involves diverse languages, challenges the developers

because they need to deal with a lot of dependencies among heterogeneous artifacts. First of

all, it is necessary to understand the existing cross-language dependencies before changing

the source code. Note that it is not trivial to detect broken relations between heterogeneous

artifacts without a supporting tool for maintaining multi-language software systems. To

better maintain multi-language software systems, developers must at least know which

constructs of each language relate to each other, reason about such dependencies and

navigate along them in a heterogeneous context. With this in mind, appropriate tools for

https://github.com/spgroup/rgms/pull/199

58 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

improving the maintainability of multi-language software systems are desirable. However,

it is complicated to implement this kind of tool because each multi-language software

system has domain-specific dependencies, depending on the framework that is being used.

It is difficult to design one tool for supporting software system maintenance and evolution

in a generic way.

1 package pages . member

2

3 import geb . Page

4 import pages . GetPageTit le

5

6 c l a s s MemberCreatePage extends Page {
7 // . . .

8 − de f f i l lMemberDeta i l s (S t r ing name , . .) {
9 + de f f i l lMemberDeta i l s (S t r ing name , . . , S t r ing a d d i t i o n a l I n f o) {

10 // . . .

11 }
12 // . . .

13 }

Listing 4.5: MemberCreatePage.groovy

1 // imports omitted

2 // . . .

3

4 //#i f ($Record)

5 page . f i l lMemberDeta i l s (name , username , email , u n i v e r s i t y) ;

6 //#end

7

8 // . . .

Listing 4.6: TestRecord.java

Figure 4.4: Relationship between Java and Groovy code.

This can be even worse if these software systems are software product lines since they

4.1 MOTIVATION 59

contain variation points in their artifacts. Putting together multi-language characteristic

with preprocessor-based artifacts, we have multi-language software product lines. It is

more difficult to maintain them because the developers should be aware of the cross-

language and feature dependencies. In the SPL context they need to handle with parts of

the artifacts should be compiled or not based on preprocessor directives. Thus, aside from

the multi-language problem, we have the feature modularization problem as described

in Chapter 3. For instance, Figure 4.4 shows a scenario where a developer modified a

method, belonging to a mandatory feature, to fix some bugs of the system but the optional

feature Record uses this method (cf. line 5). Thus, some products work as expected

and some do not, since the feature Record has a broken dependency. In other words,

all products with Record will throw an error at compilation time. Therefore, a change

in one feature might lead to errors in others. Moreover, these errors might cause both

compilation and behavioral problems in the system [59]. In many cases, bugs are only

detected by customers running a specific product with the affected feature [33].

The following sections discuss the problem of multi-language software product lines in

more detail. We show the feature dependencies between heterogeneous artifacts through

one example of a web application software product line.

4.1.1 RGMS

To better illustrate the feature modularization problem in a heterogenous collection of

artifacts, we present two maintenance scenarios from a preprocessor-based multi-language

software product line called RGMS.10 RGMS stands for Research Group Management

System, which was developed in a graduate course. The purpose of the advanced software

engineering course from the Federal University of Pernambuco aims to teach graduate

students how to build software product lines from scratch as well as from an individual

system or a set of them. To achieve this goal, the students were requested to develop

the RGMS product line. RGMS is a Grails product line that aims to manage members,

publications and research lines from a research group. RGMS contains several features

and its features are implemented using preprocessor directives. Figure 4.5 shows the

languages used in the development of the RGMS, which has almost 40 KLOC.

10https://github.com/spgroup/rgms/

https://github.com/spgroup/rgms/

60 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

Figure 4.5: RGMS’s composition of languages.

To clarify the understanding of the software product line, we present the RGMS feature

model, based on extended FODA notation [30], in Figure 4.6.

Figure 4.6: RGMS feature model.

4.1 MOTIVATION 61

The Member, Publication, Research Line, and Research Group features are re-

sponsible for managing these entities insertion, search and deletion from the system.

Meanwhile, the Reports feature is responsible for publication reports in two different

formats: PDF or Bibtex. The Social Network feature is responsible for publishing

on Facebook or Twitter the activities of a research group. The Website Generation

feature in turn allows the members to generate a website for their research group in three

different formats: XML, HTML and PDF. Also the RLSearchbyMember feature is responsi-

ble for searching research lines related to a member registered on the system. Similarly,

PubSearchbyMember retrieves the publications associated with the members of the re-

search group. Lastly, Global Search retrieves members, publications, research lines and

research groups.

RGMS is also a software product line of web applications. In fact, each RGMS product

is a web application, since RGMS is based on the Grails framework. Web applications

integrate different technologies such as scripting languages, and databases. Moreover,

these technologies written in diverse languages are linked together such as a page holds

a link to an action, which belongs to a controller class, and the latter in turn contains

a redirect11 statement that refers to other page. For example, consider Figure 4.7 to

understand these types of dependencies between distinct artifacts. It shows that a RGMS

page (login.gsp) has many relations with diverse artifacts like controller and domain

classes. We highlight only two dependencies. First, a statement of the RGMS’s login

page (cf. line 3) refers to the username field of the class User. Note that this dependency is

between a page and a domain class written in GSP and Groovy, respectively.

Suppose that a front-end developer needs to change the login page to perform a given

task. After changing the name attribute (cf. line 3), she needs to talk to her fellow worker

(i.e., a back-end developer assuming that exists this division) to reflect the change in

User or she should modify the class User by herself. Otherwise, the tag form will break

since end users cannot sign in to RGMS. To sum up, a simple change in a page fragment

might affect parts of a software system as well as a system as a whole. In this case, login

operation is not available until the change to be done in the second part of the dependence

end (class User).

11This is a client-side redirection and tells the browser to request another page.

62 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

1 package rgms . au then t i c a t i on

2

3 import rgms . member . Member

4

5 class User {
6 St r ing username

7 // . . .

8 }

Listing 4.7: User.groovy

1 <g : form id=” log ” c o n t r o l l e r=”auth” action=” s i gn In ”>

2 < !−− . . . −−>
3 <g : t e x t F i e l d name=”username” requ i r ed=” true ” />

4 < !−− . . . −−>
5 <g : submitButton name=” s i gn In ” value=” Sign In ”/>

6 <g : l ink action=” lostPassword ”>I have l o s t my password</g : l ink>

7 <g : l ink action=” r e g i s t e r ”>Create an account</g : l ink>

8 </form>

Listing 4.8: login.gsp

1 package rgms . au then t i c a t i on

2 // imports omitted

3

4 class AuthContro l ler {
5

6 de f s i gn In = {
7 // . . .

8 i f (user . passwordChangeRequiredOnNextLogon) {
9 render (view : ' resetPassword ')

10 } else {
11 render (view : ' i n i t i a l ')

12 }
13 }
14 // . . .

15 }

Listing 4.9: AuthController.groovy

Figure 4.7: Dependencies between GSP and Groovy code.

4.1 MOTIVATION 63

The second example is similar to the first one, but it involves a page and a controller

class. The attribute action of form refers to other fragment that belongs to AuthController

class (cf. line 6). Notice that into signIn action exists two render statements that establish

more relations with other pages. That is, if a developer renames the attribute action of

the RGMS’s login page (cf. line 1) she might introduce an unmatched error between

login .gsp and AuthController.groovy. Observe that this dependency exists for all products,

since it occurs among mandatory features. Consequently, the page resetPassword becomes a

dead artifact because the unique reference to resetPassword lies on AuthController (cf. line 6).

Thus, a maintenance in one page fragment might cause unsatisfied dependencies too, by

violating the existing contracts among a variety of artifacts. These contracts tend to be

undocumented and scattered throughout the code base [27]. Each contract has at least two

artifact fragments involved. These fragments can be in the same file such as dependencies

between HTML and JavaScript code, or in distinct files like relationships between HTML

and CSS code. In this chapter, we focus on inter-artifact dependencies because it is harder

to see them, since the developers might not be aware of the dependence ends when the

relation involves separate artifacts. In some cases, developers still need to know a specific

programming language to perform a determined task without causing problems in the

system.

Besides, these artifacts can hold variability of a software product line, making its

maintenance even more complicated. Figure 4.8 presents a real maintenance scenario

extracted from the RGMS product line. In this scenario, a development team, responsible

for fixing some bugs found in the social networking context, added an actionSubmit tag

to allow the end users to share periodical information on Facebook. Notice that the

attribute action of show.gsp (cf. line 4) has a reference to the share action definition in

PeriodicoController (cf. line 7). In addition, this share method belongs to the Facebook

feature. But, for some reason they forgot to encompass the actionSubmit tag with the

Facebook feature. Thus, the button named ‘Share on Facebook’ will not work for products

without Facebook.

In summary, preprocessor-based and multi-language characteristics together can make

software maintenance even more complicated. The following section discusses our proposal

to infer feature dependencies in a heterogenous context for better maintaining preprocessor-

based multi-language software product lines. More precisely, we focus on capturing feature

dependencies between heterogeneous artifacts in web-based software product lines that

use the Grails framework.

64 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

1 < !−− . . . −−>
2 <f i e ldset class=” buttons ”>

3 < !−− . . . −−>
4 <g : act ionSubmit name=” share ” action=” share ” value=” Share on Facebook”/>

5 </ f i e ldset>

Listing 4.10: Periodico/show.gsp

1 package rgms . p u b l i c a t i o n

2 // imports omitted

3

4 class P e r i o d i c o C o n t r o l l e r {
5 // . . .

6 //#i f ($Facebook)

7 de f share () {
8 de f p e r i o d i c o I n s t a n c e = Per i od i co . get (params . id)

9 de f user = User . findByUsername (S e c u r i t y U t i l s . s u b j e c t ? . p r i n c i p a l)

10 // . . .

11 r e d i r e c t (ac t i on : ”show” , id : params . id)

12 }
13 //#end

14 // . . .

15 }

Listing 4.11: PeriodicoController.groovy

Figure 4.8: Dependencies between preprocessor-based artifacts.

4.2 CROSS-LANGUAGE AUTOMATED ANALYSIS

In this section we present our solution to improve the maintainability of preprocessor-

based multi-language software product lines. We focus on capturing feature dependencies

between heterogeneous artifacts in web-based software product lines that use the Grails

framework.

As described previously, contemporary web applications are multi-language. Under

4.2 CROSS-LANGUAGE AUTOMATED ANALYSIS 65

the developer’s perspective, these systems are complex to maintain since they contain a

collection of heterogeneous artifacts, holding relations among them. Shaw [63] points out

that better forms of modularization and composition are necessary, since web development,

in particular, still retains an ad hoc character with many opportunities for improvement.

This can be even worse if these web applications are software product lines because they

contain variabilities in their artifacts. In this sense, capturing feature dependencies between

different kinds of artifacts is difficult. That is, we still have the feature modularization

problem (as described in Chapter 3), but now in a multi-language context. Therefore, we

propose an automated technique to support Grails software product line maintenance,

which infers the relationship between heterogeneous development artifacts, analyzes each

dependency taking into account feature information, and detects unsatisfied dependencies.

For example, an unmatched code element between a page (.gsp) and a controller (.groovy).

From now on, we present how our cross-language automated technique works consider-

ing the maintenance scenarios shown previously. Consider the example extracted from

Netflix Asgard project of Section 4.1, where an excerpt of the index page refers to other

belonging to a controller class. We classify this type of dependency as inter-artifact because

it involves distinct artifacts that, in their turn, were developed using different programming

languages (see Figure 4.3). We said that if a developer changes either dependence end by

renaming the attribute action in index.gsp (cf. line 8) to something else it might throw

an error informing that the property ‘list ’ is not found in the ApplicationController class.

Note that a simple change in a string constant (e.g., renaming list) might break the

behavior of part of the system, in this case, making a link inaccessible. In addition, these

unsatisfied dependencies are often discovered via error messages and in many cases at

runtime, leading to lower productivity.

Our automated analysis uses the idea of emergent feature interfaces (cf. Chapter 3) to

inform the cross-language feature dependencies to the developers, improving the modular

reasoning for multi-language software product lines based on Grails. In doing so, the

developer should select a maintenance point or a complete artifact (.gsp). After selecting

the code, we run our cross-language analysis to capture the existing dependencies between

the maintenance point and other artifacts taking into consideration feature information.

As a result, the feature interface emerges.

Figure 4.9 illustrates the emergent feature interface for the Netflix Asgard scenario.

The EFI states that a maintenance in the link tag might break the existing relation

between the attribute action from the page and a fragment that belongs to a controller.

66 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

Figure 4.9: Emergent feature interface for the Groovy link tag.

Observe that this dependency exists for all products, since it occurs among mandatory

features. After reading this interface, the developer is now aware of the existing contract

between the list in index.gsp and the list method in ApplicationController.groovy. Thus, she

knows that if it is necessary to alter the list method that lies on ApplicationController, she

needs to take a look at the action attribute in index.gsp and vice-versa. Our technique

provides information about the artifact a developer is maintaining and the remaining

ones. In addition, the developer can decide to see the dependencies found or only the

unsatisfied ones. This means that a developer of the maintenance team might only wish

to see the unsatisfied dependencies to fix a given bug. This way, she can focus on relevant

dependencies for her task at the moment.

Notice that aside from the multi-language characteristic, artifacts can hold variability,

making the interface’s construction even more interesting. For instance, we present an

example that happened in practice (cf. Figure 4.4). A developer changed the declaration

of the method fillMemberDetails by adding one parameter. After changing the code, she

committed it. However, this maintenance caused an error in another feature, since

she did not know that a fragment of the class TestRecord (cf. Listing 4.6) refers to the

fillMemberDetails declaration in MemberCreatePage. Figure 4.10 depicts the result of our

technique. The interface indicates that fillMemberDetails is used in the class TestRecord

when the feature Record is defined. Seeing this information, the developer would know

that TestRecord requires fillMemberDetails from MemberCreatePage class. That is, she could

understand the existing cross-language feature dependency before changing the code. Also,

this dependency involves mandatory and optional features. Thus, using our approach, she

might detect potential broken relations between heterogeneous artifacts with variation

4.2 CROSS-LANGUAGE AUTOMATED ANALYSIS 67

points. Developers need to understand the existing dependencies and, then, reason about

that in order to maintain multi-language software product lines.

Figure 4.10: Emergent feature interface for an action definition.

To better illustrate, Figure 4.8 exhibits that the attribute action of the page show

refers to the method share in PeriodicoController class. Besides, the share declaration belongs

to the feature Facebook. However, a developer added an actionSubmit tag in a mandatory

feature, introducing an unsatisfied feature dependency in the system because she did not

pay attention that the method share is encompassed with preprocessor directives (#if and

#end). Using our approach, she would have known that her maintenance is incomplete.

Figure 4.11 shows the EFI for this case saying that the developer should encompass the

action share in show.gsp with #if($Facebook). In other words, she is now aware of that

the button named ‘Share on Facebook’ do not work for products without Facebook.

Figure 4.11: Emergent feature interface for the Groovy actionSubmit tag.

68 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

In general, for each tag selected we identify its respective page, controller and domain

through Grails packaging and naming conventions. Afterwards, we preprocess them to

know which statements belong to a feature and which do not. Then, we get the tag

attribute values (e.g., share) and match these page attributes with the actual actions

and fields of the classes (controller and domain) taking into consideration the feature

information. Thus, if the set of actions and fields contains the current page attribute we

classify this dependency as satisfied. Otherwise, this dependency is unsatisfied. Finally,

we compute the EFI for the tag selected. The next section we explain more about it.

It is important to stress that an artifact can hold a variety of dependencies involving

a collection of distinct artifacts. These artifacts in turn can have diverse references to

other fragments and so forth. This case can be seen in Figure 4.7. We have worked to

take into account this kind of transitivity in our analysis.

Therefore, our approach uses the idea of EFI taking into account feature information

in an amount of heterogenous artifacts. The EFI alert about the existing cross-language

feature dependencies to the developers understand and reason about the impact of a

possible change in the source code during multi-language software product line maintenance.

Thus, our technique is useful to achieve independent feature and artifact comprehensibility.

As a result, the developer can change a feature or an artifact aware of the cross-language

feature dependencies, avoiding breaking the contracts among features [51]. Our cross-

language automated analysis also helps the developer to reason about feature dependencies

in a heterogenous context on multi-language software product lines, with the potential of

improving productivity.

The following section presents how we compute EFI to catch cross-language dependen-

cies in terms of implementation.

4.3 IMPLEMENTATION

We have implemented our cross-language analysis in an open-source prototype tool called

GSPAnalyzer,12 that computes feature dependencies between a given web page and

controller/domain classes. Our tool currently is not incorporated into the Emergo because

this latter works only in a single language settings, but we should integrate it in the future.

We use the Cobra Toolkit [3] to analyze web pages. Cobra is an HTML renderer and

parser written purely in Java, which provides support for CSS and JavaScript. In Cobra,

12Available at: https://github.com/jccmelo/GSPAnalyzer

https://github.com/jccmelo/GSPAnalyzer

4.3 IMPLEMENTATION 69

the class that performs parsing is HtmlParser, which is able to generate HTML DOM

trees. Thus, in this work, we choose to use Cobra Toolkit because of its ability to parse

HTML code.

After parsing a web page we get a generated tree. In doing so, we walk in the tree

looking for Groovy tags to set the feature representation, which means that every tag

is represented with an empty feature representation or with an existing one. To know

what feature encompasses a given tag, we implement a variability-aware preprocessor13

capable of preprocessing software product lines with directives such as #if, #ifdef, and

#endif. Our preprocessor is able to preprocess both web pages and Java/Groovy classes

on condition that these artifacts are following the standard of velocity [6] or antenna [1]

annotation. In fact, all directives follow a comment (“//” for Groovy and Java, “<!−−”

for HTML) that starts at the beginning of a line (whitespace is allowed left of them, but

no code). This way, they do not interfere with normal compilation. We only preprocess

the source files, but we do not compile them. So, we still have to run the Java compiler

for example on the preprocessed files afterwards. Then, we get the relations for each

tag of the page. For each dependency found, we classify whether it is satisfied or not

(i.e., broken). For this, we identify the provider and requirer code elements and with a

GroovyLoader object we obtain all actions and fields from a determined class. The code

snippet in Listing 4.12 shows a method responsible for getting all actions from a controller

class.

1 package br . ufpe . c in . g r a i l s . pages . a n a l y s i s ;

2

3 // imports omitted

4

5 public class GroovyLoader {
6 // . . .

7

8 public List<Str ing> getAct ionsFromContro l l e rClass (S t r ing c l a s s p a t h) {
9 List<Str ing> a c t i o n s = new ArrayList<Str ing >() ;

10

11 GroovyClassLoader g c l = new GroovyClassLoader () ;

12 Class c l a z z = g c l . par s eC la s s (new F i l e (c l a s s p a t h)) ;

13 // except ion handl ing omitted

14

13Available at: https://github.com/jccmelo/Preprocessor4SPL

https://github.com/jccmelo/Preprocessor4SPL

70 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

15 Method [] methods = c l a z z . getDeclaredMethods () ;

16 for (int i = 0 ; i < methods . l ength ; i++){
17 // . . .

18 a c t i o n s . add (methods [i] . getName ()) ;

19 }
20

21 return a c t i o n s ;

22 }
23 }

Listing 4.12: GroovyLoader.groovy

Then, we use an asset named configuration knowledge (CK) generated from the

preprocessing phase. Listing 4.13 shows an example of configuration knowledge. We look

for statements encompassed with preprocessor directives. After that, for each statement

found we get the feature expression and the line number, respectively. In doing so, we

generate the CK. Note that our CK holds a mapping of a feature, or a combination

of features, which we denote as a feature expression to source code line. Thus, after

preprocessing an artifact (be it a page or a class), we know which statements belong to

a feature and which do not. This way, for each Groovy tag we get its attribute values

(e.g., share as shown in Figure 4.11) and, then, we match these page attributes with the

actual actions and fields of the classes (controller and domain) taking into consideration

the feature information. Therefore, if the set of actions and fields contains the current

page attribute we classify this dependency as satisfied. Otherwise, this dependency is

unsatisfied.

1 <ck>

2 <c o n f i g exp r e s s i on=”A” l i n e=” [6 , 14 , 15] ”/>

3 <c o n f i g exp r e s s i on=”B” l i n e=” [1 0 , 21] ”/>

4 </ck>

Listing 4.13: ConfigurationKnowledge.xml

Algorithm 1 presents the process to capture feature dependencies in a multi-language

context, concerning what we described above. At the end, the algorithm returns the

set of unsatisfied cross-language dependencies involving diverse features. We follow this

algorithm to do our case study. It is important to quote that we consider the feature

4.3 IMPLEMENTATION 71

model only with mandatory and optional features without any constraints.

Algorithm 1 Capture cross-language feature dependencies in a grails project

Input: a grails project

Output: feature dependencies

projectPath← a grails pathname string

gspF iles← GETGSPs(projectPath)

for gsp in gspFiles do

PREPROCESS(gsp)

dependencies← GETDEPENDENCIES(gsp)

unsatisfiedDependencies← ANALY ZE(dependencies)

if brokenDependencies == true then

view.SHOW (unsatisfiedDependencies)

end if

end for

Figure 4.12 depicts a high level view of our tool, enabling us to abstract the irrelevant

details and focus on the “big picture”. First of all, our tool requires that the developer

enters the project path to infer feature dependencies and then generate them as emergent

feature interfaces.

Figure 4.12: GSPAnalyzer architecture.

The Visualizer component receives the project path to be analyzed, and passes

the source code location to the Analyzer component. However, to analyze the source

72 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

code and capture the feature dependencies we need to identify which code elements are

encompassed by which features. For this, the Analyzer component depends on the

Preprocessor component to preprocess each artifact instrumenting the nodes of the tree

with feature information by saving it internally into a kind of configuration knowledge.

Such tree is generated by the HTML Parser component. This information from the

generated tree and the configuration knowledge is then retrieved to feed the Analyzer

component to execute our cross-language analysis.

After executing cross-language analysis for each web page, we build the emergent

feature interfaces. The Analyzer component is also responsible for this task. To do so, it

takes the result of the analysis and crosses the obtained information with the controller

and domain classes. In other words, for each page we join all dependencies belonging

to the same feature and check whether a given dependency is broken or not. At last,

the Visualizer component displays to the developer the dependencies found through

emergent feature interfaces.

4.3.1 Limitations and Ongoing work

The idea behind our approach is to allow the developers to submit both an artifact and a

specific maintenance point so that before changing the code they can know the feature

dependencies among diverse languages. This way, they can reason about a determined

artifact or feature of the system by looking at the emerged interface. However, in terms

of implementation our tool only recognizes complete artifacts, but not fragments (i.e.,

maintenance points). Providing the ability for the developers to select a maintenance

point is an ongoing work.

Another limitation is that our tool is so far available to capture cross-language feature

dependencies of Grails software product lines. In other words, our tool currently only

supports projects that use the Grails framework, i.e., it works for GSP, Groovy and Java

code. But, we believe that our solution can be harnessed to deal with other frameworks

such as JSF and Spring MVC. Up to now, GSPAnalyzer captures only dependencies from

page to controller and domain, but does not in reverse order. In addition, we so far

capture cross-language dependencies involving the Groovy actionSubmit, fieldValue,

form, if, and link tags. Expanding to the remaining tags is another ongoing work.

We observe that implementing such tools is challenging due to heterogeneous artifacts,

and even more so due to dependencies between them, which are often domain-specific.

4.4 EVALUATION 73

Moreover, we need to provide more types of analyses for capturing feature dependencies

in a heterogeneous context. We do not capture dynamic feature dependencies (e.g.,

Javascript dependencies on demand) because our analysis is static. Our tool currently

executes only syntactic analysis.

4.4 EVALUATION

In this section we describe a case study that evaluates the feasibility of our approach. We

run our cross-language automated analysis on RGMS.14

We address the research questions below following the guidelines from Runeson and

Host [62].

� RQ1: Are there cross-language dependencies in the RGMS?

� RQ2: What types of dependencies exist from GSP to Groovy/Java code?

Next, we present our study settings and then discuss the results.

4.4.1 Study settings

Our experimental object is a multi-language software system since RGMS contains seven

languages. We only deal with three (GSP, Groovy, and Java) of the seven languages.

However, GSP, Groovy, and Java cover 94% of the RGMS’s composition of languages,

as can be seen in Figure 4.5. We presented the RGMS feature model in Section 4.1.1,

and according to the feature model (cf. Figure 4.6) and the configuration knowledge

that we omitted for simplicity, we can understand that RGMS is a product line aside

from multi-language system. RGMS has gradually been upgraded since it is utilized on

the advanced software engineering course from the Federal University of Pernambuco

for at least 2 years. For instance, in Figure 4.8 we presented a motivating scenario that

a developer team was requested to fix some bugs involving the Facebook feature. The

Facebook feature is a new one, actually it was developed at the end of 2013. Table 4.1

summarizes the statistics of the RGMS.

We consider all artifacts, except pictures and pdf files. Besides, we count LOC metric

without including whitespaces and comments. Considered altogether RGMS has more

than 46 KLOC.

14http://rgms.rcaa.cloudbees.net/

http://rgms.rcaa.cloudbees.net/

74 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

Table 4.1: Statistics of the RGMS.

Description Value

no. of artifacts 371

no. of languages 7

no. of features 17

no. of lines of code 40026

Our research questions aim to understand whether there are feature dependencies

between different languages in practice, and how we can classify these dependencies taking

into account their characteristics. To gather such knowledge, we chose to pick up all web

pages and then execute our tool to find feature dependencies between diverse languages.

More precisely, we submitted 76 pages (.gsp) to the GSPAnalyzer in order to capture

feature dependencies between GSP and Groovy/Java code, since our tool only enables

to analyze relations between those languages. Up to now, GSPAnalyzer captures only

dependencies from page to controller and domain, but does not in reverse order. The next

section analyzes the results from our study and discusses some lessons learned.

4.4.2 Results and Discussion

We automatically compute cross-language dependencies for each .gsp file. All experimental

data and results are available at the online appendix, including the RGMS version that

we use. Figure 4.13 illustrates a Boxplot graphic concerning the amount of dependencies

found and their distribution. We plot Boxplot to observe data dispersion based on the

number of dependencies. Analyzing the results of our preliminary evaluation we find that

two pages have no dependencies, whereas other pages contain more than ten dependencies.

The maximum number of dependencies is 18 in periodico/show.gsp. This means that the

number of cross-language dependencies vary across the artifacts (.gsp). We believe that

this number of dependencies can be higher since we consider only five from dozens of

Groovy tags. In addition, the quantity of dependencies that occurs most frequently is two,

i.e., most of the pages have two dependencies. In summary, most of the pages contain

cross-language dependencies.

Table 4.2 shows only the unsatisfied cross-language dependencies between diverse

features. To identify these broken relations, we run our automated analysis.

4.4 EVALUATION 75

●●

●●

●

●

●

●

●

●

●

●

●

●

0
5

10
15

Set of pages

no
. o

f d
ep

en
de

nc
ie

s

Figure 4.13: Boxplot graphic.

As we can see, the first artifact (bibtexGenerateFile/list .gsp) contains two unsatisfied

dependencies. But, they do not involve two different features because the both page

attributes (create and show) are neither present in the controller nor in the domain class.

Thus, RGMS will throw an error when exercising these page fragments for all product

configurations. Unlike those dependencies, the (periodico/show.gsp) file has one unsatisfied

dependency involving a mandatory feature and other optional (Facebook).

Table 4.2: Unsatisfied dependencies found.

Artifact Unsatisfied Dependencies

bibtexGenerateFile/list.gsp Requires create from BibtexGenerateFileController

Requires show from BibtexGenerateFileController

[Configuration: all products]

periodico/show.gsp Requires share from PeriodicoController

[Configuration: Facebook]

researchLine/show.gsp Requires publications from ResearchLine

Requires members from ResearchLine

Requires show from PublicationController

[Configuration: all products]

76 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

1 < !−− . . . −−>
2 < l i c lass=” f i e l d c o n t a i n ”>

3 < !−− . . . −−>
4 <g : each in=”${ r e s ea r chL ine In s tance . p u b l i c a t i o n s }” var=”p”>

5 <g : l ink c o n t r o l l e r=” p u b l i c a t i o n ” action=”show” id=”${p . id }”/>

6 </g : each>

7 </ l i>

Listing 4.14: researchLine/show.gsp

1 package rgms . p u b l i c a t i o n

2 // imports omitted

3

4 class P u b l i c a t i o n C o n t r o l l e r {
5 // . . .

6 de f index () { . . . }
7

8 //#i f ($Bibtex)

9 de f generateBib () { . . . }
10 //#end

11

12 //#i f ($contextua l In fo rmat ion)

13 de f stat ic Member addAuthor (Pub l i ca t i on p u b l i c a t i o n) { . . . }
14

15 de f stat ic Set membersOrderByUsually () { . . . }
16

17 de f stat ic Member getLoggedMember () { . . . }
18 //#end

19

20 de f upload (Pub l i ca t i on p u b l i c a t i o n I n s t a n c e) { . . . }
21

22 de f stat ic newUpload (Pub l i ca t i on pub l i c a t i on In s tance , . . .) { . . . }
23

24 //#i f ($ facebook)

25 de f stat ic sendPostFacebook (Member user , S t r ing t i t l e) { . . . }
26 //#end

27 }

Listing 4.15: PublicationController.groovy

Figure 4.14: Unsatisfied feature dependencies

4.4 EVALUATION 77

As shown in Table 4.2, we found three unsatisfied dependencies in show.gsp of the

researchLine package. This means that the current version of the RGMS has problems.

In Figure 4.14 we illustrate one of these problems. The Groovy link tag (g: link) holds a

cross-language dependence, but taking a closer look at PublicationController we can check

that there is no action named show. This specific case involves only a mandatory feature,

since in the referred class there is no feature that encompasses show action. If it does,

we could only have problems with some variants of the product line, depending on the

feature selection.

Another example of unsatisfied dependencies lies on Figure 4.8 that we have already

discussed. This example shows a cross-language dependence between a mandatory feature

and an optional one. In other words, this relation is between different languages and fea-

tures. The Groovy actionSubmit tag refers to the share action definition in PeriodicoController,

but the former belongs to a mandatory feature whereas the latter is encompassed with

Facebook. This means that this dependency is unsatisfied when Facebook is not selected.

Therefore, the button named ‘Share on Facebook’ will not work properly for every product

that does not have Facebook feature.

Table 4.3 summarizes how many dependencies we identified with our tool on RGMS. We

answer the first research question saying that heterogeneous artifacts tend to hold feature

dependencies. As can be seen, the number of automatically identified cross-language

dependencies is 304. From 76 pages we found 304 cross-language dependencies. We

have four dependencies per page on average. The number of relations vary across the

artifacts. For instance, in lostPassword.gsp we found just one dependency whereas we found

14 in show.gsp from bookChapter package. Therefore, feature dependencies between different

languages occur in practice, at least in this case. In addition, we believe that this number

can be larger, since our tool only supports some Groovy tags.

Table 4.3: Evaluation summary.

Type of dependencies No. of occurrences

Satisfied dependencies 304

Unsatisfied dependencies 6

Regarding the second research question, we classify the dependencies into two cate-

gories. In the first place, all dependencies are between different languages, i.e., GSP and

Groovy/Java. The two basic types are: satisfied dependency and unsatisfied dependency.

78 MULTI-LANGUAGE SOFTWARE SYSTEM ANALYSIS

The first one belongs to the class of potential problem for the software product line. Since,

at a given moment, a developer might introduce errors in the system by breaking these

satisfied relations. For this, we think that before maintaining the code, the developer

should be aware of the satisfied dependencies in order to does not break any relationship.

In other words, code maintenance can easily break a software product line or some specific

products when she does not know about the existing relations. Unsatisfied dependencies in

turn are actual problems for the system, so the developer need to fix these errors as soon

as possible to that works properly. In fact, as RGMS is a product line of web applications,

web applications that contain errors like pages that display incorrectly result in loss of

revenue and credibility [18]. To detect these errors, RGMS uses the Cucumber15 tool for

running automated acceptance tests, which determine if the requirements of a contract are

met. However, the results reveal that satisfied dependency is the most common type for

the RGMS. Several unsatisfied dependencies might have been detected and fixed during

the development phase. This fixing implies in additional cost of running and testing the

product line again. In summary, we present the number of dependencies for each type in

Table 4.3.

4.4.3 Threats to validity

4.4.3.1 Conclusion validity So far we cannot answer questions like “How helpful is

our approach to improve the modular reasoning for multi-language software product lines?”

and, “What is the possible impact that our approach causes in practice?” precisely, but

we believe that our study is an approximation to answering these questions because we

offer interfaces to the developers so that they can see the existing relations of a software

product line. In doing so, they can know which artifacts have dependencies, reason about

such dependencies and navigate along them, improving the modular reasoning for software

product lines.

4.4.3.2 External validity We acknowledge that we need of other case studies with

different sizes, purposes, architectures, granularity, and complexity to draw more general

conclusions. However, the results bring preliminary evidence about the feasibility of the

our cross-language automated approach.

15http://cukes.info/

http://cukes.info/

4.4 EVALUATION 79

4.4.3.3 Internal validity This threat concerns to the product line selection. Although

RGMS is an academic software product line, during each semester it is implemented and

improved by different developers, which are MSc or PhD students and some of them

have industrial experience. Besides that, RGMS is a product line that fits into the

characteristics we want to study in this work. It is a multi-language software system and

its artifacts are implemented using conditional compilation. Thus, we believe that RGMS

is a good system to begin with.

Besides, we automatically capture both satisfied and unsatisfied dependencies for each

artifact. But, the unsatisfied dependencies can contain some error since our tool so far

does not recognize the Groovy constructs hasMany and belongsTo. In other words, we

do not get all fields from a given domain class if it has one of those constructs. We

observe that this case happened in researchLine/show.gsp as shown in Table 4.2. From three

unsatisfied dependencies found, two of them are not actual broken dependencies. But,

this only happened in this isolated situation. Thus, we should fix this problem as soon as

possible.

CHAPTER 5

CONCLUDING REMARKS

This dissertation presents how our approach to capture feature dependencies might be

applied to maintain features in software product lines (SPLs), achieving independent

feature comprehensibility. First, we present an approach that provides an overall feature

interface considering all parts of a feature in an integrated way what we call Emergent

Feature Interfaces (EFI), which complement Emergent Interfaces (EI). We also discuss

our progress over EI by adding required and global feature interfaces, implemented in a

tool called Emergo. After a selection, Emergo shows an EFI to the developer, keeping her

informed about the dependencies between the selected feature and the other ones. We

evaluate our proposal in terms of size and precision comparing with EI by using five SPLs.

The results of our study suggest the feasibility and usefulness of the proposed approach.

Second, we use EFI for supporting the maintenance of web-based multi-language

SPLs, since the number of web applications have increased quickly over the last years.

Besides that, web applications retain an ad hoc character with many opportunities for

improvement. Thus, we propose an automated technique that infers the relationship

between heterogeneous development artifacts, analyzes each dependency taking into

account feature information, and detects unsatisfied dependencies. To implement our

technique, we developed a prototype tool called GSPAnalyzer that computes feature

dependencies between a given web page and controller/domain classes. At last, we

evaluate our technique with a multi-language product line named RGMS. The results

bring preliminary evidence that exists feature dependencies between heterogeneous artifacts

and these dependencies can be easily broken if a developer changes either dependence end.

Therefore, our work, which consists of emergent feature interfaces and cross-language

analysis, may help the developers to understand a feature independently and to reason

about it, with the potential of improving productivity.

5.1 SUMMARY OF CONTRIBUTIONS

In this dissertation we presented the following main contributions based on Chapter 3:

81

82 CONCLUDING REMARKS

� The concept of Emergent Feature Interfaces to help developers when maintain-

ing preprocessor-based software systems, allowing them reason about a feature

modularly;

� Extension of Emergo to support our approach. It computes and shows EFI after

developers select a given maintenance point, which might be a feature. Emergent

Feature Interfaces provide global feature interfaces containing provided and required

information and a simplified view of the existing dependencies;

� Comparison between Emergent Feature Interfaces and Emergent Interfaces in terms

of size and precision.

Chapter 4 presented the following contributions:

� A technique to capture feature dependencies between heterogeneous artifacts;

� Implementation of our cross-language automated analysis: GSPAnalyzer;

� A case study that brought preliminary evidence concerning the feasibility of our

approach to support modular reasoning for web-based multi-language SPLs.

5.2 LIMITATIONS

Features tend to crosscut the SPL code, and thus providing, or computing, a complete

interface for them is difficult, if not impossible. The idea is to provide a global view of a

feature abstracting irrelevant details. We focus on capturing data dependencies, but our

proposal can be extended to compute other kinds of interfaces, including dependencies

related to exceptions, control flows, and approximations of pre and post conditions. The

feature modularization problem can be seen in any SPL, since features can be explicitly

annotated on the code base or not (implicit). This way, our solution is over techniques for

implementing features in an SPL. But, for the time being, our tool only runs on features

implemented using conditional compilation.

We use an intra-procedural feature-sensitive data-flow analysis that is based on a

single data-flow analysis: reaching definitions. For this, we cannot generalize our findings

to other kinds of analysis. Specifically, we see in Section 3.3.1 that the results of our

evaluation could be different if we use an inter-procedural analysis for example. In fact,

the EFI would be huge with inter-procedural analysis depending on the product line

5.3 RELATED WORK 83

size. Thus, we intend to compute EFI on scope. For example, we could capture feature

dependencies within a class, or a package, or even a component, instead of considering

the entire product line. Regarding the performance on intra-procedural, we do not have

problems since we choose one reaching definitions analysis with high performance, provided

by Brabrand et al. [17].

Concerning our cross-language automated analysis, we so far provide to the developers

to know feature dependencies of Grails software product lines (cf. Section 4.3.1). Besides

that, we currently check only syntactic dependencies. Another limitation regarding web

applications is that the static analysis is likely to give only an approximate picture, and

dynamic analysis allows a proper understanding of complex and dynamic application

behavior. With dynamic analysis, we can track other information such as the session and

cookie data, and the type of link actually exercised (e.g., hyperlinks). Thus, we need

to provide more types of analysis for capturing feature dependencies in a heterogeneous

context.

5.3 RELATED WORK

We divide our related work according to the Chapters 3 and 4.

5.3.1 Feature Modularity

Many work investigate incorrect maintenance [26, 72, 64]. Sliwerski et al. [64] propose

a way to find evidence of bugs using repositories mining. They found that developers

usually perform incorrect changes on Friday. Anvik et al. [14] applied machine learning

in order to find ideal programmers to correct each defect. On the other hand, Gu et al.

[26] studied the rate of incorrect maintenance in Apache projects. The proposed work

helps in the sense of preventing errors during SPL maintenance, since EFI would show

the dependencies between the feature we are maintaining and the remaining ones.

Some researchers [41] studied 30 million code lines (written in C) of systems that

use preprocessor directives. They found that directives, such as #ifdef and #endif,

are important to write the code. But, the developers can easily introduce errors in the

program. For example, open a parenthesis without closing it or even write a variable and

then use it globally. This type of error (i.e., syntax error) is not common in practice [45].

But, beyond syntax error a developer might introduce semantic errors [31], which means

behavior problems. In this work, we focus on interfaces for annotation techniques, more

84 CONCLUDING REMARKS

precisely, conditional compilation to prevent these types of errors during SPL maintenance.

We show some problems that can arise when maintaining features since a feature is likely

scattered and tangled across the code. We propose the Emergent Feature Interfaces

concept to improve the modular reasoning for SPLs and, then, we analyze five SPLs

implemented with preprocessors. Additionally, we adapt the Emergo, an Eclipse plug-in,

for helping the developers to avoid breaking feature contracts.

One widespread technique to implement features of an SPL is preprocessors, but it

obfuscates the source code and reduces comprehensibility, making maintenance error-

prone and costly. Virtual Separation of Concerns (VSoC) [35] has been used to address

some of these preprocessor drawbacks by allowing developers to hide feature code not

relevant to the current maintenance task. However, different features eventually share

the same variables, so VSoC does not modularize features, since developers do not know

about hidden features. Thus, the maintenance of one feature might break another. To

minimize this problem, researchers propose the idea of Emergent Interfaces [58, 57, 61] to

capture dependencies between part of a feature that a developer is maintaining and the

others. Yet, they do not provide an overall feature interface considering all parts in an

integrated way. As a consequence, the developer cannot safely understand and reason

about one complete feature before changing the code. Our proposal complements this one

by capturing dependencies among entire features and providing a global feature interface

taking into consideration all parts of a feature. Thus, EFI prevent developers to miss

feature dependencies and, consequently, introduce errors in the SPL, improving modular

reasoning.

Another approach to capture dependencies between modules is Conceptual Module [15].

This approach allows the developers to define conceptual modules, set of lines of code

as logic units, and to perform queries over them to capture other lines that should be

part of a given module and to compute dependencies among other conceptual modules.

Also, it uses flow analysis to compute the relations among conceptual modules. Generally

speaking, we do the same with a slight difference, since we capture dependencies among

entire features. That is, we compute EFI to inform the developer about the feature

dependencies involving the feature that she is maintaining and the other features, allowing

modular reasoning for SPLs.

Other researchers [46] propose analysis of exception flows in the SPL context. For

instance, an optional feature signaled an exception and other feature handled it. When

exception signalers and handlers are added to an SPL in an unplanned way, one of the

5.3 RELATED WORK 85

possible consequences is the generation of faulty products. Our approach has a different

manner for improving the maintainability of SPLs. We detect the feature dependencies by

executing feature-sensitive data-flow analysis in order to improve modular reasoning for

SPLs when evolving them. We do not consider implicit feature dependency that occurs

in an exceptional control flow, since we focus only on dependencies among annotated

features (with preprocessor directives).

Finally, using the feature model, it is known that not all feature combinations produce

a correct product. Depending on the problem domain, selecting a feature may require or

prevent the selection of others (e.g., alternative features). Feature model is a mechanism

for modeling common and variable parts of an SPL. Safe composition is used to ensure that

all products of a product line are generated correctly [68]. Thaker et al. [68] determined

composition restrictions for feature modules and they used these restrictions to ensure

safe composition. However, safe composition only catch type errors, e.g., undefined

class/method/variable. Our approach differs from safe composition because we use EFI to

provide to the developers to see feature dependencies, preventing both type and semantic

errors during SPL maintenance. Nonetheless, safe composition is complementary because

the developer may ignore a feature dependency showed by our approach and, then,

introduce a type error. So, safe composition approaches catch it after the maintenance

task.

5.3.2 Cross-Language Analysis

Pfeiffer and Wasowski [55] introduced a taxonomy of design choices for multi-language

development environments (MDLEs) by looking at how the current IDEs and programming

editors provide development support in a single language settings. They observed that

visualization, navigation, static checking and refactoring are implemented by all IDEs.

To implement these characteristics in an MDLE, they developed TexMo, which is an

editor that allows to interrelate source code in multiple languages. Further, the authors

ran a controlled experiment with 22 participants in which they perform evolution tasks

on a web application using TexMo [54]. Furthermore, they developed a set of tools

to provide cross-language support for multi-language software systems [53]. However,

they do not provide support to feature maintenance in an SPL context. Our approach

differs from that because we take into consideration feature information. We propose a

cross-language automated analysis to compute dependencies between diverse features in a

86 CONCLUDING REMARKS

multi-language context. Then, we evaluate our approach using a web-based multi-language

SPL called RGMS. Additionally, we develop GSPAnalyzer, a standalone open-source

tool, to implement our technique, helping the developers to avoid breaking cross-language

relations.

The QWickie tool [5] provides navigation and renaming support between interrelated

HTML and Java artifacts. However, it only works with Wicket code. In other words,

QWickie cannot be used to develop with other frameworks that accept HTML and Java

code. Similarly, the IntelliJ IDEA IDE implements some multi-language development

support mechanisms. It only provides multi-language refactorings for exclusive languages,

e.g., HTML and CSS. Our tool is similar to these because it is able to capture dependencies

between GSP, Groovy and Java code. In addition, we take feature into consideration in a

heterogeneous context.

For web applications, Mesbah et al. [48] propose an automated technique to support

styling code maintenance that analyzes the relationship between the CSS rules and DOM

elements and, then, detects unmatched elements. This technique aims to assist CSS-based

development by eliminating redundant CSS rules. They implemented their technique

in a tool called CILLA, which detects unused CSS code. We differently develop a tool

named GSPAnalyzer to capture cross-language dependencies in web-based multi-language

SPLs. In addition, we consider feature relationships. But, our tool currently detect only

cross-language dependencies in Grails SPLs, i.e., between GSP and Groovy/Java code.

To the best of our knowledge, capturing cross-language dependencies between different

features from an SPL maintenance perspective has not been addressed in the literature.

5.4 FUTURE WORK

Our work can be enhanced and extended in several ways. In the first place, we intend to

improve Emergo with more robust emergent feature interfaces. Also, we should provide

inter-procedural analysis to our tool captures feature dependencies among classes, packages

and components. Besides, we intend to compute EFI on scope due to the size of them

when using inter-procedural analysis. For example, we could capture feature dependencies

within a class, or a package, or even a component, instead of considering the entire

product line. We also should conduct more studies, including a controlled experiment with

developers, to draw more general conclusions. Although we do not conduct a controlled

experiment involving developers in order to claim more precisely whether using EFI is

5.4 FUTURE WORK 87

better than EI in terms of maintenance effort, we can claim (through our study) that EFI

have potential benefits to prevent developers of introducing errors in the SPL, since EFI

present more global and accurate information. The results of our study, on five SPLs,

suggest the feasibility and usefulness of the proposed approach where the minimum result

is equals to EI.

We evaluated our cross-language automated analysis using only the RGMS product

line. We intend to evaluate our technique with more multi-language SPLs. To do so, we

need firstly to improve our tool and integrate it into Emergo and, then, to conduct larger

case studies to obtain more empirical data. Further, we will investigate how our analysis

can be used for improving the maintainability of multi-language SPLs in practice.

Finally, we would like to register that there exists an open research question concerning

distributed heterogeneous artifacts. In distributed development, a multi-language SPL

is composed of artifacts that are distributed over diverse repositories on many different

computers. So, the question is about how to capture cross-language dependencies in a

distributed environment. Thus, we think that researches in this field is promising. Besides,

the research community still has not researched how to perform static checking when

parts of the information required for the checking is not available.

BIBLIOGRAPHY

[1] Antenna preprocessor. http://antenna.sourceforge.net/.

[2] CIDE. http://www.fosd.de/cide/, seen: Feb. 2014.

[3] Cobra: Java html renderer & parser. http://www.lobobrowser.org/cobra.jsp.

[4] Emergo. http://twiki.cin.ufpe.br/twiki/bin/view/SPG/Emergo, seen: Feb.

2014.

[5] Qwickie: Eclipse plugin for wicket. https://code.google.com/p/qwickie/.

[6] Velocity preprocessor. http://velocity.apache.org/.

[7] The open source developer report - eclipse community survey, 2011. http://www.

eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf, seen:

Jan. 2014.

[8] Zend technologies ltd.: Taking the pulse of the developer community, 2011. http:

//static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.

pdf, seen: Jan. 2014.

[9] The open source developer report - eclipse community survey, 2013. http://eclipse.

org/org/press-release/20130612_eclipsesurvey2013.php, seen: Jan. 2014.

[10] Vander Alves. Implementing Software Product Line Adoption Strategies. PhD thesis,

Federal University of Pernambuco, Recife, Brazil, 2007.

[11] Vander Alves, Pedro Matos Jr., Leonardo Cole, Paulo Borba, and Geber Ramalho.

Extracting and Evolving Mobile Games Product Lines. In Proceedings of the 9th

International Software Product Line Conference (SPLC), volume 3714 of LNCS,

pages 70–81. Springer-Verlag, 2005.

89

http://antenna.sourceforge.net/
http://www.fosd.de/cide/
http://www.lobobrowser.org/cobra.jsp
http://twiki.cin.ufpe.br/twiki/bin/view/SPG/Emergo
https://code.google.com/p/qwickie/
http://velocity.apache.org/
http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf
http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf
http://static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.pdf
http://static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.pdf
http://static.zend.com/topics/zend-developer-pulse-survey-report-0112-EN.pdf
http://eclipse.org/org/press-release/20130612_eclipsesurvey2013.php
http://eclipse.org/org/press-release/20130612_eclipsesurvey2013.php

90 BIBLIOGRAPHY

[12] Michalis Anastasopoulos and Cristina Gacek. Implementing Product Line Variabilities.

In Proceedings of the 2001 Symposium on Software Reusability (SSR), pages 109–117.

ACM Press, 2001.

[13] G. Antoniol, M. Di Penta, and M. Zazzara. Understanding web applications through

dynamic analysis. In Program Comprehension, 2004. Proceedings. 12th IEEE Inter-

national Workshop on, pages 120–129, 2004.

[14] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In

Proceedings of the 28th International Conference on Software Engineering, ICSE,

pages 361–370. ACM, 2006.

[15] Elisa L. A. Baniassad and Gail C. Murphy. Conceptual module querying for software

reengineering. In Proceedings of the 20th International Conference on Software

Engineering (ICSE), pages 64–73. IEEE Computer Society, 1998.

[16] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba. Intraprocedural

dataflow analysis for software product lines. In Proceedings of the 11th International

Conference on Aspect-Oriented Software Development (AOSD), pages 13–24. ACM,

2012.

[17] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, Johnni Winther, and Paulo Borba.

Intraprocedural dataflow analysis for software product lines. Transactions on Aspect-

Oriented Software Development X, 2013.

[18] Margaret Burnett. What is end-user software engineering and why does it matter? In

Proceedings of the 2Nd International Symposium on End-User Development (IS-EUD),

pages 15–28. Springer-Verlag, 2009.

[19] Marcelo Cataldo and James D. Herbsleb. Factors leading to integration failures in

global feature-oriented development: An empirical analysis. In Proceedings of the

33rd International Conference on Software Engineering, ICSE, pages 161–170. ACM,

2011.

[20] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[21] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. Extracting

software product lines: A case study using conditional compilation. In Proceedings of

BIBLIOGRAPHY 91

the 15th European Conference on Software Maintenance and Reengineering (CSMR),

pages 191–200. IEEE Computer Society, 2011.

[22] Márcio de Medeiros Ribeiro. Emergent Feature Modularization. PhD thesis, Federal

University of Pernambuco, Recife, Brazil, 2012.

[23] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis of c

preprocessor use. IEEE Transactions on Software Engineering, 28:1146–1170, 2002.

[24] J. M. Favre. Understanding-in-the-large. In Proceedings of the 5th International

Workshop on Program Comprehension (WPC), pages 29–38. IEEE Computer Society,

1997.

[25] Eduardo Figueiredo, Nélio Cacho, Claudio Sant’Anna, Mário Monteiro, Uirá Kulesza,

Alessandro Garcia, Sérgio Soares, Fabiano Ferrari, Safoora Khan, Fernando Filho,

and Francisco Dantas. Evolving software product lines with aspects: an empirical

study on design stability. In Proceedings of the 30th International Conference on

Software Engineering (ICSE), pages 261–270. ACM, 2008.

[26] Zhongxian Gu, Earl T. Barr, David J. Hamilton, and Zhendong Su. Has the bug

really been fixed? In Proceedings of the 32nd ACM/IEEE International Conference

on Software Engineering - Volume 1 (ICSE), pages 55–64. ACM, 2010.

[27] Ahmed E. Hassan and Richard C. Holt. A visual architectural approach to maintaining

web applications. In Kang Zhang, editor, Software Visualization, volume 734 of The

Springer International Series in Engineering and Computer Science, pages 219–242.

Springer US, 2003.

[28] Dmitry Jemerov. Implementing refactorings in intellij idea. In Proceedings of the

2Nd Workshop on Refactoring Tools (WRT), pages 13:1–13:2. ACM, 2008.

[29] Pedro Matos Jr. Analyzing techniques for implementing product line variabilities.

Master’s thesis, Federal University of Pernambuco, Recife, Brazil, 2008.

[30] Kyo-Chul Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer

Peterson. Feature-Oriented Domain Analysis (FODA). Feasibility Study. Technical

Report CMU/SEI-90-TR-21, Software Engineering Institute, 1990.

92 BIBLIOGRAPHY

[31] Christian Kästner. Virtual Separation of Concerns. PhD thesis, Universität Magde-

burg, 2010.

[32] Christian Kästner and Sven Apel. Type-checking software product lines - a formal

approach. In Proceedings of the 23rd International Conference on Automated Software

Engineering (ASE), pages 258–267. IEEE Computer Society, 2008.

[33] Christian Kästner and Sven Apel. Virtual separation of concerns - a second chance

for preprocessors. Journal of Object Technology, 8(6):59–78, 2009.

[34] Christian Kästner, Sven Apel, and Don Batory. A case study implementing fea-

tures using aspectj. In Proceedings of the 11th International Software Product Line

Conference (SPLC), pages 223–232. IEEE Computer Society, 2007.

[35] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in Software

Product Lines. In Proceedings of the 30th International Conference on Software

Engineering (ICSE), pages 311–320. ACM, 2008.

[36] Christian Kästner, Sven Apel, and Klaus Ostermann. The road to feature modularity?

In Proceedings of the 15th International Software Product Line Conference, Volume

2, SPLC, pages 5:1–5:8. ACM, 2011.

[37] Christian Kästner, Paolo G. Giarrusso, and Klaus Ostermann. Partial preprocessing

c code for variability analysis. In Proceedings of the 5th Workshop on Variability

Modeling of Software-Intensive Systems, VaMoS ’11, pages 127–136. ACM, 2011.

[38] Maren Krone and Gregor Snelting. On the inference of configuration structures

from source code. In Proceedings of the 16th International Conference on Software

Engineering (ICSE), pages 49–57. IEEE Computer Society Press, 1994.

[39] Duc Le, Eric Walkingshaw, and Martin Erwig. #ifdef confirmed harmful: Promoting

understandable software variation. In IEEE International Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), pages 143–150, 2011.

[40] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.

An analysis of the variability in forty preprocessor-based software product lines. In

Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering

(ICSE), pages 105–114. ACM, 2010.

BIBLIOGRAPHY 93

[41] Jörg Liebig, Christian Kästner, and Sven Apel. Analyzing the discipline of preproces-

sor annotations in 30 million lines of c code. In Proceeding of the 10th International

Conference on Aspect Oriented Software Development (AOSD), pages 191–202. ACM,

2011.

[42] B. P. Lientz, E. B. Swanson, and G. E. Tompkins. Characteristics of application

software maintenance. Commun. ACM, 21(6):466–471, 1978.

[43] Daniel Lohmann, Fabian Scheler, Reinhard Tartler, Olaf Spinczyk, and Wolfgang

Schröder-Preikschat. A quantitative analysis of aspects in the ecos kernel. In

Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer

Systems, EuroSys, pages 191–204. ACM, 2006.

[44] P. Mayer and A. Schroeder. Cross-language code analysis and refactoring. In

Source Code Analysis and Manipulation (SCAM), IEEE 12th International Working

Conference on, pages 94–103, 2012.

[45] Flávio Medeiros, Márcio Ribeiro, and Rohit Gheyi. Investigating preprocessor-based

syntax errors. In Proceedings of the 12th International Conference on Generative

Programming: Concepts & Experiences, GPCE, pages 75–84. ACM, 2013.

[46] H. Melo, R. Coelho, and U. Kulesza. On a feature-oriented characterization of

exception flows in software product lines. In Software Engineering (SBES), 26th

Brazilian Symposium on, pages 121–130, 2012.

[47] Jean Melo and Paulo Borba. Improving modular reasoning on preprocessor-based

systems. In Software Components Architectures and Reuse (SBCARS), Seventh

Brazilian Symposium on, pages 11–19, 2013.

[48] Ali Mesbah and Shabnam Mirshokraie. Automated analysis of css rules to support

style maintenance. In Proceedings of the International Conference on Software

Engineering (ICSE), pages 408–418. IEEE Press, 2012.

[49] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51, 1992.

[50] Jeff Offutt. Quality attributes of web software applications. IEEE Softw., 19(2):25–32,

2002.

94 BIBLIOGRAPHY

[51] David L. Parnas. On the criteria to be used in decomposing systems into modules.

CACM, 15(12):1053–1058, 1972.

[52] Thomas Patzke and Dirk Muthig. Product Line Implementation Technologies.

Technical report, Fraunhofer Institut Experimentelles Software Engineering, 2002.

[53] Rolf-Helge Pfeiffer. Multi-language Development Environments - Design Space,

Models, Prototypes, Experiences. PhD thesis, IT University of Copenhagen, Denmark,

2013.

[54] Rolf-Helge Pfeiffer and Andrzej Wasowski. Cross-language support mechanisms

significantly aid software development. In Proceedings of the 15th International

Conference on Model Driven Engineering Languages and Systems (MODELS), pages

168–184. Springer-Verlag, 2012.

[55] Rolf-Helge Pfeiffer and Andrzej Wasowski. Texmo: A multi-language development

environment. In Proceedings of the 8th European Conference on Modelling Foundations

and Applications (ECMFA), pages 178–193. Springer-Verlag, 2012.

[56] Klaus Pohl, Gunter Bockle, and Frank J. van der Linden. Software Product Line

Engineering. Springer, 2005.

[57] Márcio Ribeiro, Paulo Borba, and Christian Kästner. Feature maintenance with

emergent interfaces. In Proceedings of the 36th International Conference on Software

Engineering (ICSE), 2014. To appear.

[58] Márcio Ribeiro, Humberto Pacheco, Leopoldo Teixeira, and Paulo Borba. Emergent

Feature Modularization. In Onward!, affiliated with ACM SIGPLAN International

Conference on Systems, Programming, Languages and Applications: Software for

Humanity (SPLASH), pages 11–18. ACM, 2010.

[59] Márcio Ribeiro, Felipe Queiroz, Paulo Borba, Társis Tolêdo, Claus Brabrand, and

Sérgio Soares. On the impact of feature dependencies when maintaining preprocessor-

based software product lines. In Proceedings of the 10th ACM International Conference

on Generative Programming and Component Engineering (GPCE), pages 23–32. ACM,

2011.

BIBLIOGRAPHY 95

[60] Márcio Ribeiro, Társis Toledo, Paulo Borba, and Claus Brabrand. A tool for

improving maintainabiliy of preprocessor-based product lines. In Tools Session of the

2nd Brazilian Congress on Software (CBSoft), 2011.

[61] Márcio Ribeiro, Társis Toledo, Johnni Winther, Claus Brabrand, and Paulo Borba.

Emergo: A tool for improving maintainability of preprocessor-based product lines. In

Proceedings of the 11th International ACM Conference on Aspect-Oriented Software

Development (AOSD), Companion, Demo Track, pages 23–26. ACM, 2012.

[62] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study

research in software engineering. Empirical Softw. Engg., 14(2):131–164, 2009.

[63] Mary Shaw. Modularity for the modern world: Summary of invited keynote. In

Proceedings of the Tenth International Conference on Aspect-oriented Software De-

velopment, AOSD, pages 1–6. ACM, 2011.

[64] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce

fixes? SIGSOFT Softw. Eng. Notes, 30:1–5, 2005.

[65] Henry Spencer and Geoff Collyer. #ifdef considered harmful, or portability experience

with C news. In Proceedings of the Usenix Summer Technical Conference, pages

185–198. Usenix Association, 1992.

[66] Thomas A. Standish. An essay on software reuse. IEEE Trans. Softw. Eng., 10(5):494–

497, 1984.

[67] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-Preikschat.

Feature consistency in compile-time-configurable system software: Facing the linux

10,000 feature problem. In Proceedings of the Sixth Conference on Computer Systems,

EuroSys, pages 47–60. ACM, 2011.

[68] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe composition

of product lines. In Proceedings of the 6th International Conference on Generative

Programming and Component Engineering (GPCE), pages 95–104. ACM, 2007.

[69] Társis Wanderley Tolêdo. Dataflow Analysis for Software Product Lines. Master’s

thesis, Federal University of Pernambuco, Recife, Brazil, 2013.

96 BIBLIOGRAPHY

[70] Salvador Trujillo, Don Batory, and Oscar Diaz. Feature refactoring a multi-

representation program into a product line. In Proceedings of the 5th International

Conference on Generative Programming and Component Engineering (GPCE), pages

191–200. ACM, 2006.

[71] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,

and Phong Co. Soot - a Java optimization framework. In Proceedings of CASCON,

pages 125–135, 1999.

[72] Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi Bairava-

sundaram. How do fixes become bugs? In Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software engineering

(ESEC/FSE), pages 26–36. ACM, 2011.

APPENDIX A

ONLINE APPENDIX

In this appendix we put the following links to source code, repository, and data mentioned

in this work:

� The JCalc product line code is available at: http://twiki.cin.ufpe.br/twiki/

bin/viewfile/SPG/Emergo?rev=1;filename=JCalc.zip

� Emergo repository: https://github.com/jccmelo/emergo

� GSPAnalyzer repository: https://github.com/jccmelo/GSPAnalyzer

� The results of the multi-language experiment are available at: https://github.

com/jccmelo/GSPAnalyzer/tree/master/experiment

97

http://twiki.cin.ufpe.br/twiki/bin/viewfile/SPG/Emergo?rev=1;filename=JCalc.zip
http://twiki.cin.ufpe.br/twiki/bin/viewfile/SPG/Emergo?rev=1;filename=JCalc.zip
https://github.com/jccmelo/emergo
https://github.com/jccmelo/GSPAnalyzer
https://github.com/jccmelo/GSPAnalyzer/tree/master/experiment
https://github.com/jccmelo/GSPAnalyzer/tree/master/experiment

	Chapter 1—Introduction
	Contributions
	Outline

	Chapter 2—Background
	Software Product Lines
	Benefits

	Preprocessors
	Virtual Separation of Concerns
	Emergent Interfaces

	Chapter 3—Emergent Feature Interfaces
	Motivation
	The Concept of Emergent Feature Interfaces
	Implementation
	Limitations and Ongoing work

	Evaluation
	Study settings
	Results and Discussion
	Additional analysis
	Threats to validity
	Conclusion validity
	External validity
	Internal validity

	Chapter 4—Multi-Language Software System Analysis
	Motivation
	RGMS

	Cross-Language Automated Analysis
	Implementation
	Limitations and Ongoing work

	Evaluation
	Study settings
	Results and Discussion
	Threats to validity
	Conclusion validity
	External validity
	Internal validity

	Chapter 5—Concluding Remarks
	Summary of contributions
	Limitations
	Related work
	Feature Modularity
	Cross-Language Analysis

	Future work

	Appendix A—Online Appendix

